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Abstract. All iterated skew polynomial extensions arising from quantized univer-
sal enveloping algebras of Kac–Moody algebras are special examples of a very large,
axiomatically defined class of algebras, called CGL extensions. For the purposes of
constructing initial clusters for quantum cluster algebra structures on an algebra R,
and classification of the automorphisms of R, one needs embeddings of R into quan-
tum tori T which have the property that R contains the corresponding quantum affine
space algebra A. We explicitly construct such an embedding A ⊆ R ⊂ T for each
CGL extension R using the methods of noncommutative noetherian unique factoriza-
tion domains and running a Gelfand–Tsetlin type procedure with normal, instead of
central elements. Along the way we classify the homogeneous prime elements of all
CGL extensions and we prove that each CGL extension R has an associated maximal
torus which covers the automorphisms of R corresponding to all normal elements. For
symmetric CGL extensions, we describe the relationship between our quantum affine
space algebra A and Cauchon’s quantum affine space algebra generated by elements
obtained via deleting derivations.

1. Introduction

Let R be a noncommutative (right, say) Ore domain over a field K. The first step of
the construction of a quantum cluster algebra structure on R is the construction of an
initial cluster. This amounts to the construction of a chain of embeddings

(1.1) A ⊆ R ⊂ T ⊂ Fract(R)

where A is a quantum affine space algebra, T is the corresponding quantum torus (see
Subsection 4.2 for details), and Fract(R) is the Ore division ring of R. Embeddings of the
form (1.1) also play an important role in classifying Aut(R) and proving rigidity results
for R in a general scheme recently developed by the second author [24, 23]. Assume
that R is a Z≥0-graded algebra and A and T are equipped with Z-gradings in which
their generators have positive degrees and such that the first two inclusions in (1.1) are
graded. We call an automorphism ϕ of R unipotent if ϕ(a) − a ∈ Rm+1 + Rm+2 + · · ·
for all a ∈ Rm, m ∈ Z≥0. By [23, Proposition 3.3], there is a canonical embedding of
the group of unipotent automorphisms of R into the set of certain “bifinite” unipotent
automorphisms of the corresponding completion of T , and by the rigidity result [24,
Theorem 3.6], the latter are only coming from the center of T . This method puts very
strong restrictions on the possible forms of the automorphisms of R and with its help the
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problem of classifying Aut(R) can be treated with the currently developed ring theoretic
techniques for studying Spec(R), see [24, 23].

Embeddings of the form (1.1) are currently only known for quantum Schubert cell
algebras and quantum double Bruhat cell algebras [2, 15, 10, 9]. Those are derived using
the Drinfeld R-matrix commutation relations for quantum function algebras. There is
no general technique for constructing such embeddings for axiomatically defined families
of algebras.

For a very general (axiomatically defined) family of iterated skew polynomial ex-
tensions R, containing many quantum function algebras and quantized Weyl algebras,
Cauchon [5] constructed embeddings of R into quantum tori T using the method of
deleting derivations, which consists of formally exponentiating skew derivations in cer-
tain localizations of R. For those quantum tori the first embedding in (1.1) is very
rarely satisfied for the quantum affine space algebra A generated by the corresponding
Cauchon elements. The algebras which will play a key role in this paper were named
“Cauchon–Goodearl–Letzter (CGL) extensions” in [16]. Such an algebra is an iterated
skew polynomial extension

(1.2) R = K[x1][x2;σ2, δ2] · · · [xN ;σN , δN ],

equipped with a rational action of a K-torusH by algebra automorphisms, which satisfies
the following conditions:

(i) For all 1 ≤ j < k ≤ N , σk(xj) = λkjxj for some λkj ∈ K∗.
(ii) For every k ∈ [2, N ], δk is a locally nilpotent σk-derivation of the subalgebra

Rk−1 of R generated by x1, . . . , xk−1.
(iii) The elements x1, . . . , xN are H-eigenvectors.
(iv) For every k ∈ [1, N ], there exists hk ∈ H such that (hk·)|Rk−1

= σk and hk ·xk =
λkxk for some λk ∈ K∗, which is not a root of unity.

At this point we note that the subalgebras U±[w] of quantum Kac–Moody algebras
Uq(g) introduced by De Concini–Kac–Procesi [8] and Lusztig [17] are iterated skew
polynomial extensions which satisfy the Levendorskii–Soibelman straightening rule and
are CGL extensions with respect to an action of a torus arising from the root lattice
grading of Uq(g). (See Example 4.5 for details.)

In this paper, we construct embeddings of the form (1.1) for all CGL extensions R
using techniques from noncommutative unique factorization domains and a generalized
version of the Gelfand–Tsetlin procedure. In its original form, the Gelfand–Tsetlin pro-
cedure is used to construct large commutative subalgebras of noncommutative algebras
(usually universal enveloping algebras) or of Poisson algebras. One starts with a chain
of K-algebra embeddings

(1.3) R1 ( R2 ( · · · ( RN = R.

The Gelfand–Tsetlin subalgebra GT (R) of R associated to this chain is the subalgebra
of R generated by Z(R1)∪ · · · ∪Z(RN ). It is obviously a commutative subalgebra of R.

If the algebras Rk are not universal enveloping algebras, their centers can be very
small, yet they may have large monoids of normal elements. We consider the subalgebras
generated by the latter – for example, in the case of quantum groups, those played a
key role in the classification of their maximal spectra [22, Sections 5-7]. For every K-
algebra R, let us denote by N (R) the subalgebra generated by the normal elements of
R. We will call N (R) the normal subalgebra of R. With its help we introduce a twist
to the Gelfand–Tsetlin construction. For each chain (1.3), we define the corresponding



FROM QUANTUM ORE EXTENSIONS TO QUANTUM TORI 3

normal Gelfand–Tsetlin subalgebra NGT (R) of R as the subalgebra of R generated by
N (R1)∪· · ·∪N (RN ). (Note that NGT (R) depends not only on R but also on the choice
of the chain (1.3). For simplicity, we will suppress this dependence in the notation.)
Given an iterated skew polynomial extension (1.2), there is a canonical choice for a
chain of subalgebras (1.3) given by the intermediate algebras in (1.2). In this setting,
we prove the following result (Theorem 4.6):

Theorem 1.1. For all CGL extensions R, NGT (R) is a quantum affine space algebra,
and (1.1) is satisfied for A := NGT (R) and the quantum torus T obtained by inverting
the generators of A.

Noncommutative unique factorization domains were defined and studied by Chatters
and Jordan [6, 7]. They are domains R with the property that each nonzero prime
ideal of R contains a prime element (a nonzero normal element of R which generates a
completely prime ideal). Assume that R is equipped with a rational action of a torus H,
or equivalently, R is equipped with anX(H)-grading, whereX(H) is the character lattice
of H. The algebra R is called an H-UFD if each nonzero H-prime ideal of R contains
an X(H)-homogeneous prime element. For a noetherian H-UFD R, N (R) is precisely
the subalgebra of R generated by its X(H)-homogenous prime elements, see Section 2
for details. By a theorem of Launois, Lenagan, and Rigal [16], all CGL extensions R are
noetherian H-UFDs. Hence, the normal Gelfand–Tsetlin subalgebra of a CGL extension
R is the subalgebra of R generated by the set of X(H)-homogeneous prime elements of all
intermediate algebras R1, . . . , RN from the iterated extension (1.2). We deduce Theorem
1.1 from the following theorem which establishes a recursive relationship between the
sets of X(H)-homogeneous prime elements of the H-UFDs R1, . . . , RN for an arbitrary
CGL extension R. This is the major result in the paper (see Theorem 4.3 and equation
(4.17)).

For a natural number n, set [1, n] := {1, . . . , n}. Given a map µ : [1, N ] → [1, n],
we define natural predecessor and successor functions p : [1, N ] → [1, N ] t {−∞} and
s : [1, N ]→ [1, N ] t {+∞} for the level sets of µ by equations (4.4) and (4.5).

Theorem 1.2. For an arbitrary CGL extension R of length N , there exist a natural
number n, a surjective map µ : [1, N ]→ [1, n] and a set of elements

{ck | k ∈ [2, N ], p(k) 6= −∞},
such that ck ∈ Rk−1 is X(H)-homogeneous of the same degree as∏

{xj | j ∈ µ−1µ(k) ∩ [1, k]}

and the elements y1 ∈ R1, . . . , yN ∈ RN = R recursively given by

yk :=

{
yp(k)xk − ck, if p(k) 6= −∞
xk, if p(k) = −∞

have the following properties:
(a) For all k ∈ [1, N ], the X(H)-homogeneous prime elements of Rk are the elements

κyj , κ ∈ K∗, j ∈ [1, k], s(j) > k.

(b) For all 1 ≤ j < k ≤ N ,
ykyj = qkjyjyk

where qkj ∈ K∗ are certain explicit products of the elements λkj ∈ K∗ given by equation
(4.16).
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The number n in Theorem 1.2 equals |{k ∈ [1, N ] | δk = 0}|, by equation (4.3).
Using the method of [22, Section 5], we prove that each CGL extension R is a free

left and right N (R)-module in which N (R) is a direct summand. We also construct an
explicit N (R)-basis of R, see Theorem 4.11 for details.

There is a torus going with any CGL extension R, which is maximal within a suitable
subgroup of Aut(R), whose action covers all the automorphisms corresponding to normal
elements of R, as follows (see Theorems 5.3, 5.5 and Corollary 5.4).

Theorem 1.3. Let R be an arbitrary CGL extension of length N , and let n be the
natural number appearing in Theorem 1.2. The group

H′ := {ψ ∈ Aut(R) | x1, . . . , xN are ψ-eigenvectors}

is a K-torus of rank n, and R is a CGL extension with respect to the action of H′. For
every nonzero normal element u ∈ R, there exists h ∈ H′ such that ua = (h · a)u for all
a ∈ R.

Along the way to the proof of Theorem 1.2, we establish a general recursive rela-
tionship between the set of X(H)-homogeneous prime elements of an H-UFD B and
the sets of X(H)-homogeneous prime elements of certain skew polynomial extensions
R := B[x;σ, δ]. For this one needs to require that the conditions (Cx1)–(Cx5) listed in
Section 3 are satisfied. These conditions are nothing but an abstraction of the conditions
for one step of a CGL extension. Under those conditions, Launois, Lenagan, and Rigal
proved [16, Proposition 2.9] that R is also an H-UFD. The following result is Theorem
3.7.

Theorem 1.4. Let R = B[x;σ, δ] be a skew polynomial algebra, equipped with a rational
action of a K-torus H by algebra automorphisms which leave B invariant. Assume
that B is an H-UFD and that R satisfies the conditions (Cx1)–(Cx5) listed in Section
3. Let {ui | i ∈ I} be a list of the X(H)-homogeneous prime elements of B up to
taking associates. Then there are the following three possibilities for a list of the X(H)-
homogeneous prime elements of R up to taking associates:

(i) {ui | i ∈ I, i 6= i0} t {vi0 := ui0x− c◦} for some i0 ∈ I and c◦ ∈ B such that u−1
i0
c◦

is a nonzero X(H)-homogeneous element of B[u−1
i0

] with the same X(H)-degree as x.
(ii) {ui | i ∈ I} t {x}.
(iii) {ui | i ∈ I}.

Section 2 contains definitions and some general facts about noncommutative UFDs
and prime elements. Theorem 1.4 is proved in Section 3. In Section 4, we prove that the
situation (iii) never occurs in the setting of CGL extensions. This establishes a general
vanishing property of certain skew derivations of CGL extensions, see Theorem 4.2(b)
for details. Theorems 1.1 and 1.2 are also proved in Section 4, while Theorem 1.3 is
proved in Section 5.

For the iterated skew polynomial extensions R which are subalgebras of quantized
universal enveloping algebras Uq(g), the elements x1, . . . , xN are among the Lusztig root
vectors of Uq(g). They satisfy the Levendorskii–Soibelman straightening rule, which
means that in the setting of (1.2), δk(xj) belongs to the subalgebra of R generated by
xj+1, . . . , xk−1 for all j < k. Together with a mild assumption on the action of H, all
such CGL extensions R have a second CGL extension presentation

(1.4) R = K[xN ][xN−1;σ′N−1, δ
′
N−1] · · · [x1;σ′1, δ

′
1].
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We call such CGL extensions symmetric, see Definition 6.2. In Theorem 6.6, we prove
that for all symmetric CGL extensions R, the quantum torus associated to NGT (R)
for the presentation (1.2) coincides with the Cauchon quantum torus [5] of R for the
presentation (1.4). We also explicitly express the X(H)-homogeneous prime elements of
all intermediate algebras R1, . . . , RN in terms of the Cauchon elements of Fract(R) (for
the presentation (1.4)). The proof is based on an extension of the method of [9, Section
3].

Commutative unique factorization domains were previously used in the area of clus-
ter algebras [1, 11]. The idea was that after enough clusters are constructed for certain
coordinate rings, the unique factorization property can be used to prove that the co-
ordinate rings actually coincide with the constructed (upper) cluster algebras. In our
treatment, the noncommutative UFD property is used in a different fashion, namely
to construct initial clusters for a more general family of noncommutative associative
algebras which do not necessarily come from Kac–Moody Lie algebras. We prove in [14]
that, under mild assumptions on the scalars in the base field, every symmetric CGL
extension possesses a quantum cluster algebra structure. (See [13] for an overview.)

1.1. Notation. We finish the introduction with a word on notation. Throughout the
paper, K will denote an infinite base field. All algebras will be unital K-algebras, all
automorphisms will be K-algebra automorphisms, and all skew derivations will be K-
linear left skew derivations. All skew polynomial rings B[x;σ, δ] will be assumed to be
left Ore extensions, meaning that the commutation rule is given by xb = σ(b)x + δ(b)
for b ∈ B. Elements a and b in a K-algebra are said to quasi-commute if ab and ba are
nonzero scalar multiples of each other. The center of a ring R is denoted Z(R).

2. Noncommutative unique factorization domains

We recall the noncommutative unique factorization conditions introduced by Chatters
and Jordan [6], [7], summarize some of their results and a theorem of Launois, Lenagan,
and Rigal [16], and develop some extensions.

2.1. UFRs and UFDs. We separate out the noetherian assumption from [6, Definition,
p.50], [7, Definition, p.23], and [16, Definitions 1.1, 1.2].

A (noncommutative) unique factorization ring (UFR) is a prime ring R such that
each nonzero prime ideal of R contains a nonzero prime ideal generated by a normal
element, i.e., an element u ∈ R such that Ru = uR.

Let R be a domain. A prime element in R is any nonzero normal element p ∈ R
such that Rp is a completely prime ideal, i.e., R/Rp is a domain. A (noncommutative)
unique factorization domain (UFD) is a domain R such that each nonzero prime ideal
of R contains a prime element.

Because of the noncommutative Principal Ideal Theorem (e.g., [18, Theorem 4.1.11]),
a noetherian UFR is a UFD if and only if it is a domain and all its height one prime
ideals are completely prime.

Continue to assume that R is a domain, and let u ∈ R be a normal element. We say
that u is a divisor of an element a ∈ R, written u | a, provided a ∈ Ru, which holds
if and only if a = ru for some r ∈ R, if and only if a = us for some s ∈ R. As in the
commutative case, a nonzero normal element p ∈ R is prime if and only if p is not a unit
and (p | ab =⇒ p | a or p | b) for all a, b ∈ R. We say that normal elements u, v ∈ R are
associates provided Ru = Rv, which occurs if and only if u = av for some unit a ∈ R,
if and only if u = vb for some unit b ∈ R.
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Proposition 2.1. Let R be a noetherian UFR.
(a) Every nonzero normal element of R can be expressed in the form cp1p2 · · · pn for

some unit c ∈ R and some normal elements pi ∈ R such that each Rpi is a prime ideal.
In case R is a UFD, the pi must be prime elements.

Now assume that R is a noetherian UFD.
(b) Every nonzero element of R can be expressed in the form cp1p2 · · · pn for some

prime elements pi ∈ R and some c ∈ R which has no prime divisors.
(c) Let u be a nonzero, nonunit, normal element of R. Then u is prime if and only

if u is irreducible, that is, (u = ab =⇒ a or b is a unit) for all a, b ∈ R.
(d) Let u ∈ R be a nonzero normal element, and let a, b ∈ R such that u | ab or u | ba.

If u and a have no prime common divisors, then u | b.

Proof. For (a) and (b), see [7, p.24] and [6, Proposition 2.1]. Parts (c) and (d) follow
from (b) just as in the commutative case. �

2.2. H-UFDs. Let R be a domain which is a K-algebra, and H a group acting on R
by K-algebra automorphisms. Recall that an H-prime ideal of R is any proper H-stable
ideal P of R such that (IJ ⊆ P =⇒ I ⊆ P or J ⊆ P ) for all H-stable ideals I and J
of R.

Following [16, Definition 2.7], we say that R is an H-UFD provided each nonzero
H-prime ideal of R contains a prime H-eigenvector. The proof of Proposition 2.1 (see
also [22, Proposition 6.18 (ii)]) is easily adapted to give the following result.

Proposition 2.2. Let R be a noetherian H-UFD.
(a) Every normal H-eigenvector in R is either a unit or a product of prime H-eigen-

vectors.
(b) Let u be a nonunit normal H-eigenvector in R. Then u is prime if and only if it

is irreducible.
(c) Let u ∈ R be a normal H-eigenvector, and let a, b ∈ R such that u | ab or u | ba.

If u and a have no prime H-eigenvector common divisors, then u | b.

Remark 2.3. Let R be a K-algebra with a rational action of a K-torus H by K-algebra
automorphisms. Equivalently, R is equipped with a grading by the character lattice
X(H) of H (e.g., [4, Lemma II.2.11]). An element of R is an H-eigenvector if and
only if it is nonzero and X(H)-homogeneous. Throughout the paper we will use the
term homogeneous prime element of R instead of prime H-eigenvector since this is more
suggestive from a ring theoretic perspective. The term homogeneous will always mean
X(H)-homogeneous. The latter term will only be used in cases when the dependence on
the underlying torus H has to be emphasized.

Note that X(H) is a free abelian group and therefore a totally ordered group. Conse-
quently, if R is a domain, then all units of R are homogeneous. Finally, we recall from
[4, Proposition II.2.9] that if R is noetherian, all H-prime ideals of R are prime.

The arguments of [16] yield the following result.

Theorem 2.4. [Launois-Lenagan-Rigal] Let R be a noetherian K-algebra, and H a K-
torus acting rationally on R by K-algebra automorphisms. Assume that R is an H-UFD.
Then R is a UFR, but not necessarily a UFD.

Proof. (Adapted from [16, Proposition 1.6, Theorem 3.6].)
Let X0 be the set of homogeneous prime elements in R, and let X be the multi-

plicative set generated by X0. Since X consists of normal elements, it is a right and
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left denominator set in R. Let T = RX−1 be the corresponding Ore localization of R.
We first show that any nonzero H-stable ideal I of R meets X. Since R is noetherian,
there are prime ideals P1, . . . , Pt minimal over I such that P1P2 · · ·Pt ⊆ I. For each j,
the largest H-stable ideal Qj contained in Pj is H-prime, and it is nonzero because it
contains I. By hypothesis, Qj contains a homogeneous prime element qj . Therefore I
contains the element q1q2 · · · qt from X.

It follows that T , with respect to the induced action of H, is an H-simple ring, i.e.,
the only H-stable ideals of T are 0 and T . By [4, Corollary II.3.9], the center of T is a
Laurent polynomial ring over a field and there are inverse bijections between SpecT and
SpecZ(T ) given by contraction and extension. Hence, Z(T ) is a commutative UFD, and
every nonzero prime ideal of T contains a nonzero prime ideal generated by a central
element.

We must show that each nonzero prime ideal P of R contains a nonzero prime ideal
generated by a normal element. If P meets X, then because the elements of X0 are
normal, P must meet X0. Take p ∈ P ∩ X0; then P contains the nonzero prime ideal
Rp.

Now assume that P ∩ X = ∅. Then PT is a nonzero prime ideal of T , so there is
some nonzero element z ∈ PT ∩ Z(T ) such that zT is a prime ideal. The contraction
P ′ = zT ∩ R is a nonzero prime ideal of R such that P ′ ⊆ P and P ′T = zT , and we
may replace P by P ′. Thus, there is no loss of generality in assuming that PT = zT .
We can write z = ax−1 for some a ∈ P and x ∈ X, and we have P = a1R + · · ·+ amR
for some ai ∈ P . Moreover, each ai = zti for some ti ∈ T . There exist p1, . . . , pn ∈ X0

such that x−1, z, t1, . . . , tm all lie in RY −1, where Y is the multiplicative set generated
by {p1, . . . , pn}. Since we may remove any pj which is an associate of a different pi, we
may assume that pi is not an associate of pj for any i 6= j. Note that z ∈ Z(RY −1) and
P (RY −1) = zRY −1.

Set R0 = R and Ri = R[p−1
1 , . . . , p−1

i ] for i = 1, . . . , n. As in the proof of [16,
Proposition 1.6], it follows from [16, Lemma 1.5] that pi+1 is a prime element of Ri for
each i = 0, . . . , n− 1. A reverse induction using [16, Lemma 1.4] now shows that PRi is
generated by a normal element of Ri for each i = n, . . . , 0. Therefore P = Ru for some
normal element u in R. This completes the proof that R is a UFR.

To see that R need not be a UFD, assume that charK 6= 2 and take R to be the
quantum plane K〈x, y | xy = −yx〉. The torus H = (K∗)2 acts rationally on R so
that (α, β).x = αx and (α, β).y = βy for all (α, β) ∈ H. The elements x, y ∈ R are
homogeneous and prime, and any nonzero H-prime ideal of R contains one of them (e.g.,
[4, Example II.1.11]). Thus, R is an H-UFD. The element x2 − 1 is central in R, and
it is easily seen that R(x2 − 1) is a prime ideal (e.g., apply [18, Lemma 10.6.4(iv)]),
necessarily of height one. It is not completely prime, and therefore R is not a UFD. �

Now return to the situation at the beginning of this subsection. A normal element
u ∈ R is said to be H-normal if there is some h ∈ H such that ua = h(a)u for all a ∈ R.
(It is not assumed that u is an H-eigenvector.) We reserve the term H-prime element
for any prime element of R which is both H-normal and an H-eigenvector, i.e., any
H-normal homogeneous prime element. The algebra R will be called a strong H-UFD
in case each nonzero H-prime ideal of R contains an H-prime element. An H-UFD R is
a strong H-UFD if and only if each homogeneous prime element of R has an associate
which is an H-prime element. If R is an H-UFD and all units of R are central, then R
is a strong H-UFD if and only if its homogeneous prime elements are H-prime.
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Proposition 2.5. Let R be a noetherian strong H-UFD.
(a) Every normal H-eigenvector in R can be expressed in the form cp1p2 · · · pn for

some unit H-eigenvector c ∈ R and some H-prime elements pi ∈ R.
(b) Let u ∈ R be a normal H-eigenvector, and let a, b ∈ R such that u | ab or u | ba.

If u and a have no H-prime common divisors, then u | b.
(c) Let a and b be nonzero elements of R. Then a = a′w and b = b′w where w is a

product of H-prime elements of R while a′ and b′ are elements of R with no H-prime
common divisors.

Proof. Part (a) is proved in the same way as in Propositions 2.1, 2.2, and parts (b), (c)
follow from (a) just as in the commutative case. �

Theorem 2.6. Let R be a noetherian K-algebra, and H a K-torus acting rationally on
R by K-algebra automorphisms. Assume that R is a strong H-UFD. Then each normal
element of R is an associate of an H-normal element. If all units of R are central, then
all normal elements of R are H-normal.

Proof. The second conclusion of the theorem is an immediate consequence of the first.
By Theorem 2.4, R is a UFR. Thus, to prove the first conclusion of the present theorem,
Proposition 2.1(a) allows us to reduce to the case of a normal element p ∈ R such that
Rp is a prime ideal. If p is an associate of an H-eigenvector, then Rp is a height one
H-prime ideal of R. In this case, Rp = Rp′ for some H-prime element p′, and we are
done. Thus, we may assume that p is not an associate of any H-prime element. Since
Rp is a height one prime ideal of R, it thus cannot contain any H-prime elements.

Let X be the multiplicative set generated by the set of H-prime elements of R, and
set T = RX−1. As in the proof of Theorem 2.4, Z(T ) is a commutative UFD, and
contraction and extension provide inverse bijections between SpecT and SpecZ(T ).
Since Rp is a prime ideal containing no H-prime elements, and these elements are all
normal, it follows that Rp is disjoint from X. Consequently, Tp is a height one prime
ideal of T . Thus, Tp = Tp′ for some p′ ∈ Z(T ), and p = p′t for some unit t ∈ T . We
claim that t = cu1u

−1
2 for some unit c of R and some u1, u2 ∈ X. Then c−1pu2 = p′u1,

and there exist h1, h2 ∈ H such that uia = hi(a)ui for all a ∈ R. Now

c−1ph2(a)u2 = c−1pu2a = p′u1a = h1(a)p′u1 = h1(a)c−1pu2

for all a ∈ R, and thus c−1pb = h1h
−1
2 (b)c−1p for all b ∈ R, proving that c−1p is

H-normal.
It remains to show that any unit t ∈ T must have the claimed form. Write t = au−1

and t−1 = v−1b for some a, b ∈ R and u, v ∈ X. In view of Proposition 2.5(c), we may
assume that a and u have no H-prime common divisors, and that b and v have no H-
prime common divisors. From the equation v−1bau−1 = 1 in T , we obtain ba = vu in R.
By Proposition 2.5(b), u | b and v | a, say b = ub′ and a = a′v for some a′, b′ ∈ R. Since
u and v quasi-commute (because both are H-normal and homogeneous), we conclude
that b′a′ is a nonzero scalar. Consequently, a′ is a unit in R, and therefore t = a′vu−1

has the desired form. �

Recall the definition of the normal subalgebra N (R) of a K-algebra R. We have the
following fact concerning the normal subalgebra of an H-UFD R.

Proposition 2.7. Let R be a noetherian H-UFD for a K-torus H acting rationally on
R by K-algebra automorphisms. Then N (R) is precisely the subalgebra of R generated
by the homogeneous prime elements and the units of R.
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If the group of units of R is reduced to scalars, then Proposition 2.7 states that N (R)
is the (unital) subalgebra of R generated by the homogeneous prime elements of R.

Proof. Obviously the subalgebra of R generated by the homogeneous prime elements
and units of R is a subalgebra of N (R). For the opposite inclusion, let u ∈ R be a
nonzero normal element. By [22, Proposition 6.20],

u = u1 + · · ·+ un

where u1, . . . , un are nonzero normal H-eigenvectors with distinct eigenvalues and by
Proposition 2.2(a) each of them is either a unit or a product of homogeneous prime
elements in R. �

3. From prime elements of B to prime elements of B[x;σ, δ]

3.1. General assumptions. Throughout Section 3, we work in the following setting:

• B is a K-algebra with a rational action of a K-torus H by K-algebra automor-
phisms.
• B is an H-UFD (recall Subsection 2.2).
• R = B[x;σ, δ] is a skew polynomial algebra, equipped with a rational action of H

by K-algebra automorphisms, extending the action of H on B.

Consider the following conditions:

(Cx1) B is noetherian.
(Cx2) δ is locally nilpotent.
(Cx3) B is H-stable and x is an H-eigenvector. If this holds, let λ ∈ X(H) denote the

H-eigenvalue of x.
(Cx4) There exists h◦ ∈ H such that (h◦·)|B = σ and x is an h◦-eigenvector with

h◦-eigenvalue λ◦ which is not a root of unity.
(Cx5) All H-prime ideals of B are completely prime.

Of course, if (Cx1) holds, then R is noetherian as well.
Conditions (Cx1)–(Cx5), together with the assumption that B is a K-algebra domain,

mean that R is a Cauchon extension in the sense of [16, Definition 2.5]. (The q-skew
condition in that definition holds automatically, due to the following observation.) If
(Cx4) holds, then, by applying h◦ to the equations xa = σ(a)x + δ(a) for a ∈ B, we
see that λ◦xσ(a) = σ2(a)λ◦x+ σδ(a); comparing this with xσ(a) = σ2(a)x+ δσ(a), we
conclude that

(3.1) σδ(b) = λ◦δσ(b) ∀b ∈ B.

Similarly, if (Cx3) holds, we see that

(3.2) (h·)|Bδ = λ(h)δ(h·)|B ∀h ∈ H.

By [16, Proposition 2.9], if conditions (Cx1)–(Cx5) are satisfied, then R is an H-UFD.
The goal of this section is to obtain an explicit description of the set of homogeneous
prime elements of R in terms of the homogeneous prime elements of B.

If u ∈ B is a nonzero normal element, then the corresponding automorphism of B
will be denoted by

(3.3) ϕu ∈ Aut(B), where ub = ϕu(b)u, ∀b ∈ B.
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3.2. Degree one homogeneous prime elements of R and properties of the skew
derivation δ. Our minimal assumptions in this subsection are conditions (Cx3) and
(Cx4). Denote by E the multiplicative set generated by all homogeneous prime elements
of B. The set E is an Ore subset of B. Since σ(E) = h◦ ·E = E, this set is also an Ore
subset of R, and

R[E−1] = B[E−1][x;σ, δ]

for the canonical induced actions of σ and δ on B[E−1]. Since B is an H-UFD, every
nonzero H-prime ideal of B meets E. In case B is noetherian, it follows (as in the proof
of Theorem 2.4) that every nonzero H-stable ideal of B meets E, and thus B[E−1] is
H-simple.

We will need the following result which is a special case of [4, Lemma II.5.10]:

Lemma 3.1. Assume (Cx1), (Cx3) and (Cx4). If in the above setting R[E−1] is not
H-simple, then there exists a unique homogeneous element d ∈ B[E−1] such that d = 0
or d has the same X(H)-degree as x and

δ(b) = db− σ(b)d for all b ∈ B[E−1].

Moreover, R[E−1](x− d) is the only nonzero H-prime ideal of R[E−1].

Corollary 3.2. Assume that (Cx1), (Cx3) and (Cx4) are satisfied. Then all homo-
geneous prime elements of R = B[x;σ, δ] have degree at most 1 in x. Up to taking
associates, there is at most one homogeneous prime element of R which does not belong
to B (i.e., has degree 1 in x).

Proof. If v is a homogeneous prime element of R such that v /∈ B, then v is a ho-
mogeneous prime element of R[E−1]. Thus, R[E−1] is not H-simple, so there exists
d ∈ B[E−1] as in Lemma 3.1, and v is an associate of the prime element x− d ∈ R[E−1]
(as prime elements of R[E−1]). This implies that v has degree at most 1 in x. Since Rv
is a prime ideal of R disjoint from E, we have

Rv = (R[E−1]v) ∩R =
(
R[E−1](x− d)

)
∩R.

If w is any other homogeneous prime element of R that is not in B, the same argument
as above shows that

Rw =
(
R[E−1](x− d)

)
∩R,

and therefore Rw = Rv. �

We finish this subsection with some properties of locally nilpotent skew derivations
of an H-UFD.

Lemma 3.3. Assume (Cx2)–(Cx4).
(a) If a ∈ B such that δ(a) ∈ aB or δ(a) ∈ Ba, then δ(a) = 0.
(b) If δ is an inner σ-derivation, i.e., there is some c ∈ B such that δ(b) = cb−σ(b)c,

∀b ∈ B, then δ = 0. If, in addition c is a homogeneous element of B of degree λ, then
c = 0.

Proof. (a) By assumption, δ is locally nilpotent and σδ = λ◦δσ with λ◦ not a root of
unity. The result is thus given by [20, Lemme 7.2.3.2].

(b) Write c = c0 + · · · + cm where the ci are homogeneous elements (possibly zero)
of B of distinct X(H)-degrees µi and µ0 = λ. If b ∈ B is homogeneous of degree ρ,
then δ(b) is homogeneous of degree λρ by (3.2). On the other hand, each cib− σ(b)ci is
homogeneous of degree µiρ, so δ(b) = c0b−σ(b)c0. Since this holds for all homogeneous
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b ∈ B, it holds for all b ∈ B. Now δ(c0) = c2
0 − (h◦ · c0)c0 = (1− λ◦)c2

0. Part (a) implies
that δ(c0) = 0. Since λ◦ 6= 1, it follows that c2

0 = 0 and so c0 = 0. Thus, δ = 0. �

Remark 3.4. Although we will not need this, we note that the second statement in
Lemma 3.3(b) holds under the weaker assumption that c is a σ-eigenvector. The proof
of this fact is the same.

3.3. Inducing prime elements of R = B[x;σ, δ] from prime elements of B. Next
we construct a homogeneous prime element of R = B[x;σ, δ] for each homogeneous
prime element of B.

Assume that R = B[x;σ, δ] and H satisfy the conditions (Cx1)–(Cx4). Then the set
{xn | n ∈ Z≥0} is an Ore subset of R (e.g., [5, Lemme 2.1]). Consider the Cauchon map

(3.4) θ : B → R[x−1] given by θ(b) =
∞∑
m=0

(1− λ◦)−m

[m]λ◦ !
[δmσ−m(b)]x−m,

where λ◦ ∈ K∗ is the element from (Cx4) and [m]q = 1 + · · ·+ qm−1, [m]q! = [0]q · · · [m]q
are the standard q-integers and factorials. The H-action on R induces an H-action on
R[x−1] and the map θ is H-equivariant [16, Lemma 2.6]. Denote B′ := θ(B). Cauchon
[5, Section 2] proved that θ : B → B′ is a K-algebra isomorphism and that R[x−1] =
B′[x±1;σ] for the extension of σ to an automorphism of R[x−1] (preserving B′) given by
σ = (h◦·).

For an ideal J of R denote the ideal of its leading coefficients

lc(J) := {b ∈ B | ∃a ∈ J, m ∈ Z≥0 such that a− bxm ∈ Bxm−1 + · · ·+B}.

Lemma 3.5. Assume (Cx1)–(Cx5). If J is an H-invariant ideal of B, then θ(J)[x±1]∩R
is an H-invariant ideal of R and lc(θ(J)[x±1] ∩ R) = J . If J is completely prime,
then θ(J)[x±1] ∩ R is completely prime. If J is a height one prime ideal of B, then
θ(J)[x±1] ∩R is a height one prime ideal of R.

Proof. The proofs of the first two statements are straightforward and are left to the
reader.

For the proof of the last statement, assume that J is a height one prime ideal of B
for which θ(J)[x±1] ∩ R is not a height one prime ideal of R. Since R is an H-UFD
by [16, Proposition 2.9], there exists a homogeneous prime element p of R such that
Rp ( θ(J)[x±1] ∩R. Thus P := Rp is an H-invariant completely prime ideal of R such
that

{0} ( P ( θ(J)[x±1] ∩R.
Furthermore, x /∈ θ(J)[x±1]∩R since 1 /∈ lc(θ(J)[x±1]∩R) = J , where we used the first
part of the lemma. Localization with respect to {xm | m ∈ Z≥0} leads to

(3.5) {0} ( P [x−1] ( (θ(J)[x±1] ∩R)[x−1] = θ(J)[x±1].

But R[x−1] = B′[x±1;σ]. Since P [x−1] is an H-invariant ideal of B′[x±1;σ], by [16,
Lemma 2.2]

P [x−1] = (P [x−1] ∩B′)[x±1]

and (3.5) implies

{0} ( P [x−1] ∩B′ ( θ(J).

This is a contradiction, since P [x−1] ∩B′ is a completely prime ideal of B′, and θ(J) is
a height one prime ideal of B′. �
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Theorem 3.6. Let R = B[x;σ, δ] be a skew polynomial algebra, equipped with a rational
action of a K-torus H by algebra automorphisms which leave B invariant. Assume that
B is an H-UFD and that R satisfies (Cx1)–(Cx5). Let u be a homogeneous prime
element of B, and let α ∈ K∗ be such that

σ(u) = h◦ · u = αu.

Then exactly one of the following two situations occurs:
(i) The element u remains a prime element of R.
In this case, u quasi-commutes with x via

ux = α−1xu.

Furthermore,

δ(u) = 0 and θ(uB)[x±1] ∩R = uR.

(ii) There exists a unique element c◦ ∈ B such that v := ux − c◦ is a homogeneous
prime element of R (in particular u - c◦).

In this case, δ is given by

(3.6) δ(b) = (u−1c◦)b− σ(b)(u−1c◦), ∀b ∈ B,
and v normalizes the elements of R as follows:

(3.7) vx = α−1xv, vb = (ϕuσ(b))v = ϕu(h◦ · b)v, ∀b ∈ B,
cf. (3.3). Furthermore,

uc◦ = (αλ◦)
−1c◦u, δ(u) = α(λ◦ − 1)c◦,

δ(c◦) = 0, δ(u−1c◦) = −(λ◦ − 1)(u−1c◦)
2,

and

θ(uB)[x±1] ∩R = vR.

We note that by Corollary 3.2, the situation (ii) cannot simultaneously occur for two
homogeneous prime elements v of R which are not associates of each other.

Proof. By Lemma 3.5, θ(uB)[x±1] ∩ R is a height one H-prime ideal of R and by [16,
Proposition 2.9] R is an H-UFD. Therefore there exists a homogeneous prime element
v of R such that

(3.8) θ(uB)[x±1] ∩R = vR.

It follows from Corollary 3.2 that the degree of v with respect to x is at most 1. Thus
exactly one of the following two cases holds: (1) v ∈ B or (2) the degree of v with
respect to x equals 1. First we prove several facts for the two cases simultaneously and
then proceed with the rest separately.

Denote the leading coefficient of v (as a left polynomial in x with coefficients in B)
by u′. The first part of Lemma 3.5 implies

uB = lc(θ(uB)[x±1] ∩R) = lc(vR) = u′B.

Therefore u′ is a homogeneous prime element of B which is an associate of u (in B).
Thus, after multiplying v by a unit of B we can assume that

(3.9) u′ = u.

Denote

θ(u) = u+ c−1x
−1 + · · ·+ c−mx

−m
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for some m ∈ Z≥0, c−1, . . . , c−m ∈ B, c−m 6= 0. Let i be the degree of v as a polynomial
in x with coefficients in B (i.e., i = 0 in case (1) and i = 1 in case (2)). It follows from
(3.8) and the definition (3.4) of θ that

(3.10) v =

i∑
l=n

θ(ual)x
l

for some n ∈ Z and al ∈ B such that n ≤ i, ai = 1, and an 6= 0. Since θ(u)xm ∈
θ(uB)[x±1]∩R, equation (3.8) and the fact that R[x−1] = B′[x±1;σ] (where B′ = θ(B))
imply

(3.11) θ(u)xm = v
( m2∑
l=m1

θ(bl)x
l
)

for some m1 ≤ m2 in Z and bl ∈ B such that bm1 6= 0 and bm2 6= 0. Let us substitute
(3.10) in (3.11) and compare the coefficients of the powers of x, keeping in mind that
R[x−1] = B′[x±1;σ]. Since B′ is a domain, we obtain n = i, m1 = m2, i+m2 = m, and

θ(u)xm = θ(u)xiθ(bm2)xm2 .

The H-equivariance of the map θ : B → B′ implies u = uσi(bm2). Thus, bm2 = 1 and

(3.12) v = θ(u)xi.

Case (1). Equations (3.9) and (3.12) imply that in this case v = u. It follows from
the definition (3.4) of the map θ and equation (3.12) that δ(u) = 0. Hence,

xu = σ(u)x = αux.

Case (2). By (3.9), in this case v = ux − c◦ for some c◦ ∈ B. Since v is a normal
element of R = B[x;σ, δ],

vb = (ϕuσ(b))v, ∀b ∈ B.
By a straightforward computation, this implies that δ is given by

(3.13) δ(b) = (u−1c◦)b− σ(b)(u−1c◦), ∀b ∈ B.
Invoking (3.12) and using the definition (3.4) of the map θ, we obtain

ux− c◦ = v = θ(u)x = ux− (λ◦ − 1)−1(δσ−1(u)).

and δ2(u) = 0. Hence,

δ(u) = α(λ◦ − 1)c◦ and δ(c◦) = 0.

Again by a direct computation, one obtains from the first equation and the formula
(3.13) for δ that

uc◦ = (αλ◦)
−1c◦u.

Since v is X(H)-homogeneous, σ(u−1c◦) = λ◦(u
−1c◦), and hence σ(c◦) = αλ◦c◦. It

follows at once from (3.13) that δ(u−1c◦) = −(λ◦ − 1)(u−1c◦)
2. Using the formulas for

δ(u) and δ(c◦), again by a direct computation one obtains

xv = αvx.

The situation (ii) cannot occur for two different elements c◦ and c′◦, since in such a
case ux− c◦ and ux− c′◦ would be two homogeneous prime elements of R \B which are
not associates, thus contradicting Corollary 3.2.

We have shown that case (1) implies situation (i) together with the stated additional
conditions, and that case (2) implies situation (ii) together with its stated additional
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conditions. It remains to show that situations (i) and (ii) cannot occur simultaneously.
This will follow from showing that δ(u) = 0 in situation (i) while δ(u) 6= 0 in situation
(ii).

Assume situation (i), that is, u is a prime element of R. The element xu = αux+δ(u)
must then lie in uR, whence δ(u) ∈ uB. This implies δ(u) = 0 by Lemma 3.3(a).

Finally, assume situation (ii), that is, there is a homogeneous prime element v =
ux − c◦ in R, for some c◦ ∈ B. In particular, c◦ 6= 0, and formula (3.6) holds. Since
u−1v = x − u−1c◦ is a homogeneous element of R[E−1], it must have the same X(H)-
degree λ as x, and so σ(u−1c◦) = λ◦u

−1c◦. Hence, σ(c◦) = αλ◦c◦. Siince vc◦ =
αλ◦uc◦x− c2

◦ lies in Rv, we must have vc◦ = c◦v, whence αλ◦uc◦ = c◦u. Applying (3.6)
to u, we conclude that δ(u) = α(λ◦ − 1)c◦ 6= 0.

This completes the proof of the theorem. �

3.4. A classification of the homogeneous prime elements of B[x;σ, δ]. By [16,
Proposition 2.9] if the conditions (Cx1)–(Cx5) are satisfied and B is an H-UFD, then
R = B[x;σ, δ] is an H-UFD. The following theorem classifies the homogeneous prime
elements of R.

Theorem 3.7. Let R = B[x;σ, δ] be a skew polynomial algebra, equipped with a rational
action of a K-torus H by algebra automorphisms which leave B invariant. Assume
that B is an H-UFD and that R satisfies (Cx1)–(Cx5). Let {ui | i ∈ I} be a list
of the homogeneous prime elements of B up to taking associates. Then there are the
following three possibilities for a list of the homogeneous prime elements of R up to
taking associates:

(i) {ui | i ∈ I, i 6= i0} t {vi0 := ui0x− c◦} for some i0 ∈ I and c◦ ∈ B such that u−1
i0
c◦

is a nonzero homogeneous element of B[u−1
i0

] with the same X(H)-degree as x.
(ii) {ui | i ∈ I} t {x}.
(iii) {ui | i ∈ I}.

We prove Theorem 3.7 at the end of this subsection.
The next proposition describes the automorphisms corresponding to all homogeneous

prime elements of R in Theorem 3.7 and the relationship of the skew derivation δ to the
homogeneous prime elements of B and R. It is a direct consequence of Theorem 3.6 and
its proof is left to the reader.

Proposition 3.8. Assume the setting of Theorem 3.7. For i ∈ I, let αi ∈ K∗ be such
that σ(ui) = h◦ · ui = αiui. Then the following statements hold:

(a) In case (i) of Theorem 3.7, we have

δ(b) = (u−1
i0
c◦)b− σ(b)(u−1

i0
c◦), ∀b ∈ B,

δ(ui) = 0, ∀i ∈ I \ {i0}, δ(ui0) = αi0(λ◦ − 1)c◦ 6= 0,

and

ui0c◦ = (αi0λ◦)
−1c◦ui0 , δ(c◦) = 0, δ(u−1

i0
c◦) = −(λ◦ − 1)(u−1

i0
c◦)

2.

Furthermore,

uix = α−1
i xui, ∀i ∈ I \ {i0}, vi0x = α−1

i0
xvi0 , and

vi0b = (ϕui0σ(b))vi0 = ϕui0 (h◦ · b)vi0 , ∀b ∈ B.

(b) In case (ii) of Theorem 3.7, we have δ = 0,

xb = σ(b)x, ∀b ∈ B and uix = α−1
i xui, ∀i ∈ I.
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(c) In case (iii) of Theorem 3.7, we have δ 6= 0,

δ(ui) = 0 and uix = α−1
i xui, ∀i ∈ I.

Remark 3.9. In Theorem 4.2 we prove that the situation (iii) in Theorem 3.7 can
never occur when B is a CGL extension. While we do not know an example when this
situation can be realized, it appears to be difficult to rule it out in the generality of
Theorem 3.7.

We will need the following lemma for the proof of Theorem 3.7.

Lemma 3.10. If u ∈ B is a prime element of R = B[x;σ, δ], then u is a prime element
of B.

Proof. The lemma follows from the fact that under the above assumptions, u is normal
in B and uB = (uR) ∩B is a completely prime ideal of B. �

Proof of Theorem 3.7. By Theorem 3.6, for each i ∈ I, exactly one of the following two
situations occurs:

(*) ui remains a prime element of R, or
(**) there exists c◦ ∈ R such that vi := uix− c◦ is a homogeneous prime element of

R.

Corollary 3.2 implies that the situation (**) cannot occur for two different indices
i ∈ I. Thus we have two cases:

(1) For all i ∈ I, (*) is satisfied.
(2) For some i = i0 ∈ I, (**) is satisfied, and for all i ∈ I \ {i0}, (*) is satisfied.

Note that it is possible that I = ∅, in which case (1) holds.
Case (1). By Theorem 3.6, in this case δ(ui) = 0 for all i ∈ I. It follows from Lemma

3.10 that every homogeneous prime element of R of degree 0 in x is an associate of one
of the elements ui for some i ∈ I. Again by Corollary 3.2, R has no homogeneous prime
elements of degree strictly greater than 1, and up to taking associates, R has at most
one homogeneous prime element of degree 1. Suppose that an element of the latter form
exists, and denote it by ux − c◦ where u is a homogeneous normal element of B. Set
d := u−1c◦. This is a homogeneous element of B[E−1] of degree λ.

If u is a unit of B, then x−d is a normal element of R. Hence, δ is an inner σ-derivation
of B,

(3.14) δ(b) = db− σ(b)d, ∀b ∈ B.

By Lemma 3.3(b), d = 0. Furthermore, δ = 0 and we are in the situation (ii).
If u is not a unit of B, then after multiplying u by a unit of B we can assume that

u is equal to a product of ui’s (with at least one term). Theorem 3.6 implies that in
this case δ(ui) = 0,∀i ∈ I and thus δ(u) = 0. Moreover, δ is still given by (3.14) and
δ(u) = 0 is equivalent to ud = α−1du, where α ∈ K∗ is such that σ(u) = αu. It follows
from (3.14) that x− d is a normal element of R[E−1] and more precisely

(x− d)b = σ(b)(x− d), ∀b ∈ B[E−1].

Using this and the property ud = α−1du, we obtain

(ux− c◦)x = u(x− d)
[
(x− d) + d

]
=
[
α−1(x− d) + α−1λ◦d

]
u(x− d)(3.15)

= α−1
[
x+ (λ◦ − 1)d

]
(ux− c◦).
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This is a contradiction since d /∈ B and λ◦ 6= 1. Therefore in this subcase B has no
homogeneous prime elements of degree one in x and we are in the situation (iii).

Case (2). Lemma 3.10 implies that every homogeneous prime element of R of degree
0 is an associate of one of the elements ui for some i ∈ I. By Corollary 3.2, R has
no homogeneous prime elements of degree greater than 1 and all homogeneous prime
elements of R of degree 1 are associates of ui0x−c◦. It follows from Theorem 3.6 that the
element ui0 ∈ R is not prime since the two cases in that theorem are mutually exclusive.
Thus, in this case we are in the situation (i). �

3.5. From B to B[x;σ, δ] for strong H-UFDs. We complete this section with a
treatment of the passage from B to R = B[x;σ, δ] in the case when B is a strong
H-UFD.

Theorem 3.11. Let R = B[x;σ, δ] be a skew polynomial algebra, equipped with a rational
action of a K-torus H by algebra automorphisms which leave B invariant. Assume that
B is a strong H-UFD and that R satisfies (Cx1)–(Cx5). Assume that if δ = 0, then for
every ξ ∈ K∗ there exists t ∈ H such that (t·)|B = idB and t ·x = ξx. Then R is a strong
H-UFD.

Let {ui | i ∈ I} be a list of the H-prime elements of B up to taking associates, and
let ti ∈ H be such that

uib = (ti · b)ui, ∀b ∈ B.
Let αi, ξi ∈ K∗ be such that σ(ui) = h◦ · ui = αiui and ti · x = ξix. Then there are three
possibilities for a list of the H-prime elements of R up to taking associates exactly as in
cases (i)–(iii) of Theorem 3.7.

In case (i),

(3.16) uic = (ti · c)ui, ∀i ∈ I \ {i0}, c ∈ R and vi0c = (ti0h◦ · c)vi0 , ∀c ∈ R.

In case (ii), for every i ∈ I there exists t′i ∈ H such that (t′i·)|B = idB and t′i · x =
(αiξi)

−1x. There also exists t ∈ H such that (t·)|B = idB and t ·x = λ−1
◦ x. Furthermore,

(3.17) uic = (tit
′
i · c)ui, ∀i ∈ I, c ∈ R,

and

(3.18) xc = (h◦t · c)x, ∀c ∈ R.

In case (iii),

(3.19) uic = (ti · c)ui, ∀i ∈ I, c ∈ R.

Proof. Since B is an H-UFD, Theorem 3.7 applies, and since B is a strong H-UFD, we
may assume that the list {ui | i ∈ I} of H-prime elements of B is also a complete list
(up to taking associates) of the homogeneous prime elements of B. Once we show that
each of the lists in the three cases of Theorem 3.7 consists of H-normal elements of R,
we will have established that R is a strong H-UFD and will have verified the statement
in the second paragraph of the theorem. Thus, all we need to prove is the validity of
equations (3.16)–(3.19).

Equations (3.17) and (3.18) are straightforward, in light of Proposition 3.8(b), and
are left to the reader.

By Proposition 3.8(a), equation (3.16) is equivalent to showing

αiλ(ti) = 1, ∀i ∈ I \ {0} and αi0λ◦λ(ti0) = 1
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in case (i). Using the fact that u−1
i0
c◦ has X(H)-degree λ (which follows from the

homogeneity of vi0 = ui0x− c◦) and Theorem 3.6, we obtain that for all i ∈ I \ {i0},

0 = δ(ui) = (u−1
i0
c◦)ui − αiui(u−1

i0
c◦) = (λ(ti)

−1 − αi)uiu−1
i0
c◦.

Thus, αiλ(ti) = 1. Similarly,

αi0(λ◦ − 1)c◦ = δ(ui0) = (u−1
i0
c◦)ui0 − αi0ui0(u−1

i0
c◦) = (λ(ti0)−1 − αi0)c◦

and αi0λ◦λ(ti0) = 1.
Finally, we consider case (iii). Applying Proposition 3.8(c), we see that (3.19) is

equivalent to

(3.20) αiλ(ti) = 1, ∀i ∈ I.

Since δ 6= 0, there exists a homogeneous element b of B such that δ(b) 6= 0. Denote its
degree by µ ∈ X(H). Fix i ∈ I. Acting by δ on the equality uib = µ(ti)bui and taking
into account that δ(ui) = 0 and σ(ui) = αiui leads to

(3.21) αiuiδ(b) = µ(ti)δ(b)ui.

On the other hand, δ(b) is homogeneous of degree λµ by (3.2). Thus

(3.22) uiδ(b) = λ(ti)µ(ti)δ(b)ui.

Combining equations (3.21) and (3.22), and using that B is a domain and δ(b) 6= 0,
leads to

α−1
i µ(ti) = λ(ti)µ(ti).

This implies (3.20) and completes the proof of the theorem. �

4. Homogeneous prime elements and normal Gelfand–Tsetlin
subalgebras of CGL extensions

4.1. Induction on homogeneous prime elements of CGL extensions. Consider
an iterated skew polynomial extension of length N ,

(4.1) R := K[x1][x2;σ2, δ2] · · · [xN ;σN , δN ].

For k ∈ [0, N ], denote the k-th algebra in the chain Rk := K[x1][x2;σ2, δ2] · · · [xk;σk, δk].
Thus, R0 = K and RN = R.

Definition 4.1. An iterated skew polynomial extensionR as in (4.1) is called a Cauchon–
Goodearl–Letzter (CGL) extension [16, Definition 3.1] if it is equipped with a rational
action of a K-torus H by K-algebra automorphisms satisfying the following conditions:

(i) For all 1 ≤ j < k ≤ N , σk(xj) = λkjxj for some λkj ∈ K∗.
(ii) For every k ∈ [2, N ], δk is a locally nilpotent σk-derivation of Rk−1.

(iii) The elements x1, . . . , xN are H-eigenvectors.
(iv) For every k ∈ [1, N ], there exists hk ∈ H such that hk · xk = λkxk for some

λk ∈ K∗, which is not a root of unity, and hk · xj = λkjxj , for all j ∈ [1, k − 1]
(i.e., σk = (hk·) as elements of Aut(Rk−1), for all k ∈ [2, N ]).

These conditions are chosen in such a way so the methods of [12] produce a finite
stratification of SpecR by spectra of (commutative) Laurent polynomial rings and the
deleting derivation method of [5] for studying SpecR is applicable.

For all CGL extensions R, the equality σkδk = λkδkσk holds for k ∈ [2, N ], just as
in (3.1). Moreover, Rk = Rk−1[xk;σk, δk] is a Cauchon extension, for all k ∈ [1, N ]:
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Conditions (Cx1)–(Cx4) are clear, and (Cx5) holds by [12, Proposition 4.2]. Thus, all
H-prime ideals of the algebras R1, . . . , RN are completely prime.

The group of units of an iterated skew polynomial extension R is reduced to scalars.
Thus, two prime elements of R are associates if and only if they are scalar multiples of
each other. By [16, Proposition 3.2, Theorem 3.7], every CGL extension is an H-UFD,
and every torsionfree CGL extension is a UFD, where the latter property means that
the subgroup of K∗ generated by {λkj | 1 ≤ j < k ≤ N} is torsionfree. We address the
strong H-UFD property in the following section.

The next theorem describes the homogeneous prime elements of R = RN iteratively
from those of RN−1. It proves that the situation (iii) from Theorem 3.7 never arises in
the framework of CGL extensions.

Theorem 4.2. Let R be an arbitrary CGL extension of length N as in (4.1). The
following hold:

(a) Let {ui | i ∈ I} be a list of the homogeneous prime elements of RN−1 up to scalar
multiples. There are two possibilities for a list of the homogeneous prime elements of R
up to scalar multiples:

(i) {ui | i ∈ I \ {i0}}t{ui0xN − c◦} for some i0 ∈ I and c◦ ∈ RN−1 such that u−1
i0
c◦

is a nonzero homogeneous element of RN−1[u−1
i0

] with the same X(H)-degree as
xN .

(ii) {ui | i ∈ I} t {xN}.
(b) Let h ∈ H, σ := (h·) ∈ Aut(R), and δ be a locally nilpotent σ-derivation of R

such that σδ = qδσ for some q ∈ K∗ which is not a root of unity. If

(4.2) δ(u) = 0 for all homogeneous prime elements u of R,

then δ = 0.

The proof of Theorem 4.2 will be given in subsection 4.3.
It follows from Theorem 3.7 (or Theorem 4.2) that a CGL extension R has only a

finite number of pairwise nonproportional homogeneous prime elements. We will denote
this number by n and call it the rank of R. The rank of R also equals the number of
H-prime ideals of height 1 in R.

For each k ∈ [1, N ], Theorem 4.2 in combination with Proposition 3.8 implies that
rankRk = rankRk−1 if δk 6= 0, while rankRk = rankRk−1 + 1 if δk = 0. Thus,

(4.3) rankRk =
∣∣{j ∈ [1, k] | δj = 0}

∣∣, ∀k ∈ [1, N ].

4.2. Structure of CGL extensions. Given a function µ : [1, N ] → [1, n], we define
predecessor and successor functions

p = pµ : [1, N ]→ [1, N ] t {−∞}, s = sµ : [1, N ]→ [1, N ] t {+∞}

for the level sets of µ by

(4.4) p(k) =

{
max{j < k | µ(j) = µ(k)}, if ∃j < k such that µ(j) = µ(k),

p(k) = −∞, otherwise

and

(4.5) s(k) =

{
min{j > k | µ(j) = µ(k)}, if ∃j > k such that µ(j) = µ(k),

s(k) = +∞, otherwise.
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Theorem 4.3. Let R be a CGL extension of length N and rank n as in (4.1). There
exist a surjective function µ : [1, N ]→ [1, n] and elements

ck ∈ Rk−1 for all k ∈ [2, N ] with p(k) 6= −∞

such that the elements y1, . . . , yN ∈ R, recursively defined by

(4.6) yk :=

{
yp(k)xk − ck, if p(k) 6= −∞
xk, if p(k) = −∞,

are homogeneous and have the property that for every k ∈ [1, N ],

(4.7) {yj | j ∈ [1, k], s(j) > k}

is a list of the homogeneous prime elements of Rk up to scalar multiples.

Proof. We define µ : [1, k] � [1, rankRk] and elements ck ∈ Rk−1 (when p(k) 6= −∞)
for k = 1, . . . , N . At each step, the new function µ will be an extension of the previous
one, and so the corresponding new predecessor function p will also be an extension of
the previous one. However, the successor functions may change, so we will write sk for
the successor function going with µ on [1, k].

To start, set µ(1) := 1. Note that p(1) = −∞ and s1(1) = +∞. Moreover, y1 := x1

is the unique homogeneous prime element of R1 up to scalar multiples.
Now let 1 < k ≤ N , and assume that µ has been defined on [1, k − 1], together with

elements cj ∈ Rj−1 for j ∈ [1, k− 1] with p(j) 6= −∞ and yj ∈ Rj for j ∈ [1, k− 1], such
that the desired properties hold. In particular, {yj | j ∈ [1, k− 1], sk−1(j) ≥ k} is a list
of the homogeneous prime elements of Rk−1 up to scalar multiples. There are two cases
to consider, corresponding to cases (i), (ii) of Theorem 4.2(a).

In the first case, there is some j0 ∈ [1, k − 1] such that sk−1(j0) ≥ k and some
ck ∈ Rk−1 such that

(4.8) {yj | j ∈ [1, k − 1], j 6= j0, sk−1(j) ≥ k} t {yj0xk − ck}

is a list of the homogeneous prime elements of Rk up to scalar multiples. In this case,
rankRk = rankRk−1, and we extend µ to a function [1, k] � [1, rankRk] by setting
µ(k) = j0. Since sk−1(j0) ≥ k, we see that p(k) = j0, and so yk := yj0xk−ck. It is easily
checked that the set (4.8) equals (4.7).

In the second case, {yj | j ∈ [1, k−1], sk−1(j) ≥ k}t{xk} is a list of the homogeneous
prime elements of Rk up to scalar multiples. In this case, we set µ(k) = rankRk and
readily check the desired properties. �

Theorem 4.3 implies that the rank of each intermediate CGL extension Rk is equal
to ∣∣µ([1, k])

∣∣.
The set (4.7) of pairwise nonproportional homogeneous prime elements of Rk can be
also written as

{ymax(µ−1(i)∩[1,k]) | i ∈ µ([1, k])}.
If R is a strong H-UFD, then using Theorem 3.11 one easily describes the elements

of H which induce the automorphisms of each Rk corresponding to the homogeneous
prime elements (4.7) of Rk. We leave the details to the reader.

The following examples illustrate Theorem 4.3.
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Example 4.4. Let q ∈ K∗ be a non-root of unity, and r ∈ Z≥0. Let R be the K-algebra
given by generators x1, x2, x3 and relations

x2x1 = qx1x2 + 1, x3x1 = q−1x1x3 + xr2, x3x2 = qx2x3.

As noted in case 9 of [20, Proposition 7.2.3.3], R is an iterated skew polynomial ring

R = K[x1][x2;σ2, δ2][x3;σ3, δ3].

There is a rational action of the rank one torus H = K∗ on R by K-algebra automor-
phisms such that

α.x1 = αx1, α.x2 = α−1x2, α.x3 = α−r−1x3

for α ∈ H. It is easily checked that R is a CGL extension. For later reference, we note
that R is not symmetric in the sense of Definition 6.2, since there is no element h′1 ∈ H
such that h′1 · x2 = q−1x2 and h′1 · x3 = qx3.

The elements yk of Theorem 4.3 can be given as follows:

y1 = x1, y2 = y1x2 − (1− q)−1, y3 = y2x3 − (qr+1 − 1)−1xr+1
2 .

For each k = 1, 2, 3, the element yk is the unique homogeneous prime element of Rk up
to scalar multiples, and so Rk has rank 1. We leave the calculations to the reader.

Example 4.5. Let g be a finite dimensional simple Lie algebra and Uq(g) be the cor-
responding quantized universal enveloping algebra over a base field K of arbitrary char-
acteristic for a deformation parameter q ∈ K∗ which is not a root of unity. Denote the
rank of g by r. Let Ei, Fi and K±1

i , i ∈ [1, r] be the standard generators of Uq(g) as
in [4]. Denote by U+ and U− the subalgebras of Uq(g) generated by E1, . . . , Er and
F1, . . . , Fr, respectively. De Concini–Kac–Procesi [8] and Lusztig [17] defined a family
of subalgebras U±[w] of U± indexed by the elements w of the Weyl group of g which in
the case K = C are deformations of the coordinate rings of the corresponding Schubert
cells equipped with the standard Poisson structure. There is a canonical action of a
K-torus H of rank r on Uq(g) that preserves all of the subalgebras U±[w]. For each
reduced expression of w, there is an iterated Ore extension presentation of U±[w] and
this is a CGL extension presentation [19]. For later reference, we note that the part of
the proof of [22, Lemma 6.6] between equations (6.7) and (6.8) implies that U±[w] sat-
isfy the hypotheses of Theorem 5.1. Because U±[w] satisfy the Levendorskii–Soibelman
straightening law, these algebras are symmetric CGL extensions in the terminology of
Section 6.

The X(H)-homogenous prime elements of U±[w] were explicitly described in [22,
Theorem 6.2(i)]. This theorem in particular implies that the rank of U±[w] equals the
cardinality of the support of the Weyl group element w (the set of simple roots αi such
that the corresponding reflection si appears in one and thus in any reduced expression
of w). The recursive nature of the X(H)-homogenous prime elements of U±[w] was
proved in [9, Proposition 3.3] which together with [22, Theorem 6.2(i)] established the
validity of Theorem 4.3 for the quantum Schubert cell algebras U±[w]. The proofs of
both results in [9, 22] used in an essential way the second realization of the algebras
U±[w] in terms of quantum function algebras from [21, Theorem 3.7] and Drinfeld’s
R-matrix commutation relations, while our proof of Theorem 4.3 directly relies on the
iterated Ore extension structure of the algebra in discussion.

Theorem 4.3 has important consequences for the structure of all CGL extensions R.
In particular, it can be used to describe explicitly the normal subalgebra N (R) and the
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normal Gelfand–Tsetlin subalgebra NGT (R) of R, cf. the introduction for definitions.
Recall that a matrix q := (qjk) ∈MN (K∗) is called multiplicatively skewsymmetric if

qjkqkj = qkk = 1, ∀j, k ∈ [1, N ].

Such a matrix gives rise to the quantum affine space algebra

(4.9) Aq := Oq(KN ) =
K〈Y1, . . . , YN 〉

〈YkYj − qkjYjYk | 1 ≤ j < k ≤ N〉
and the quantum torus

(4.10) Tq := Oq((K∗)N ) = Aq[Y −1
1 , . . . , Y −1

N ].

Both Aq and Tq have Gelfand–Kirillov dimension equal to N .
The algebra R given by (4.1) has the K-basis

(4.11) {xf := xm1
1 · · ·x

mN
N | f := (m1, . . . ,mN ) ∈ ZN≥0}.

Consider the reverse lexicographic order ≺ on ZN≥0: (m′1, . . . ,m
′
N ) ≺ (m1, . . . ,mN ) if

there exists j ∈ [1, N ] such that m′j < mj and m′k = mk, ∀k ∈ [j + 1, N ]. We will say

that b ∈ R \ {0} has leading term ξxf where ξ ∈ K∗ and f ∈ ZN≥0 if

b = ξxf +
∑

g∈ZN≥0, g≺f

ξgx
g

for some ξg ∈ K. Denote lt(b) := ξxf . It follows from condition (i) in Definition 4.1 that
(4.12)

lt(xfxf
′
) =

(∏
k>j

λ
mkm

′
j

kj

)
xf+f ′ , ∀ f = (m1, . . . ,mN ), f ′ = (m′1, . . . ,m

′
N ) ∈ ZN≥0.

For k ∈ [1, N ], let k := (m1, . . . ,mN ) ∈ ZN≥0 be such that mj = 1, if j ≤ k and

µ(j) = µ(k), and mj = 0 otherwise. Equation (4.6) implies

(4.13) lt(yk) = xk, ∀k ∈ [1, N ].

The elements λkj , 1 ≤ j < k ≤ N give rise to a unique multiplicatively skewsymmetric
matrix

(4.14) Λ = (λjk) ∈MN (K∗).
Define the order function O− : [1, N ]→ Z≥0 by

O−(k) := max{m ∈ Z≥0 | pm(k) 6= −∞},
where as usual p0 := id. For j, k ∈ [1, N ] set

(4.15) αkj :=

O−(j)∏
m=0

λk,pm(j) ∈ K∗.

It follows from (4.13) and the homogeneity of yj (recall Definition 4.1(i)) that

σk
(
xj
)

= αkjx
j and σk(yj) = αkjyj , ∀ 1 ≤ j < k ≤ N.

Consider the multiplicatively skewsymmetric matrix q = q(R) := (qjk) ∈ MN (K∗)
such that

(4.16) qjk :=

O−(j)∏
i=0

O−(k)∏
m=0

λpi(j),pm(k)
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for j, k ∈ [1, N ]. It follows from Theorem 4.3 and equations (4.12), (4.13) that

lt(ykyj) = qkj lt(yjyk), ∀j, k ∈ [1, N ].

On the other hand, using Theorem 4.3, Proposition 3.8, and the homogeneity of yj , we
see by induction on k that yk and yj quasi-commute for 1 ≤ j < k ≤ N . Therefore,

(4.17) ykyj = qkjyjyk, ∀j, k ∈ [1, N ].

For q = q(R), we thus obtain a K-algebra homomorphism

ι : Aq → R such that ι(Yk) := yk, ∀k ∈ [1, N ],

and in view of (4.13) we see that ι is injective. It extends to an injective K-algebra
homomorphism ι : Tq → Fract(R). We will identify ι(Aq) and ι(Tq) with Aq and
Tq. Denote by Nq the subalgebra of Aq generated by those yj , j ∈ [1, N ] such that
s(j) = +∞. It is obviously isomorphic to a quantum affine space algebra of dimension
n.

Recalling Proposition 2.7 and noting that the units of R are scalars, we obtain the
following result.

Theorem 4.6. Let R be a CGL extension of length N and rank n as in Definition
4.1, and define q = q(R) via (4.16). The normal subalgebra N (R) of R equals the
quantum affine space algebra Nq of dimension n. The normal Gelfand–Tsetlin subalgebra
NGT (R) of R corresponding to the canonical chain of subalgebras

R1 ⊂ R2 ⊂ · · · ⊂ RN
equals the quantum affine space algebra Aq of dimension N . Furthermore, we have
K-algebra embeddings

Aq ⊆ R ⊂ Tq ⊂ Fract(R),

where Tq is the quantum torus corresponding to Aq.

Applying Proposition 3.8 to the situation of Theorem 4.3 leads to the following facts
for the skew derivations δk and commutation relations for the homogeneous prime ele-
ments of Rk and the two terms of yk.

Proposition 4.7. Keep the notation from Theorem 4.3. Let k ∈ [2, N ].
(a) If p(k) = −∞, then δk = 0.
The automorphisms of Rk corresponding to its homogeneous prime elements are given

by

yjxk = α−1
kj xkyj , ∀j ∈ [1, k − 1], yka = σk(a)yk, ∀a ∈ Rk−1,

together with the actions of ϕyj on Rk−1 for j ∈ [1, k− 1] such that s(j) ≥ k (obtainable
by recursion).

(b) If p(k) 6= −∞, then the skew derivation δk is nonzero and is given by

δk(a) = y−1
p(k)cka− σk(a)y−1

p(k)ck, ∀a ∈ Rk−1

and satisfies

δk(yj) = 0, ∀j ∈ [1, k − 1] such that s(j) > k, δk(yp(k)) = αkp(k)(λk − 1)ck 6= 0,

δk(ck) = 0, δk(y
−1
p(k)ck) = −(λk − 1)(y−1

p(k)ck)
2.
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The automorphisms of Rk corresponding to its homogeneous prime elements are given
by

yjxk = α−1
kj xkyj , ∀j ∈ [1, k − 1] such that s(j) > k, ykxk = α−1

kp(k)xkyk,

yka = (ϕyp(k)σk(a))yk = ϕyp(k)(hk · a)yk, ∀a ∈ Rk−1,

together with the actions of ϕyj on Rk−1 for j ∈ [1, k− 1] such that s(j) ≥ k (obtainable
by recursion). Furthermore, the components yp(k) and ck of yk satisfy

yp(k)ck = (αkp(k)λk)
−1ckyp(k).

Corollary 4.8. Every homogeneous prime element of R quasi-commutes with x1, . . . , xN .
More precisely,

(4.18) yjxk = α−1
kj xkyj ∀j, k ∈ [1, N ] with s(j) > k.

Consequently, xkN (R) = N (R)xk for all k ∈ [1, N ].

Proof. We just need to establish (4.18), since that implies the first statement, and the
last statement follows from the first because N (R) is generated by the homogeneous
prime elements of R.

We proceed by induction on l ∈ [1, N ], to prove that (4.18) holds for j, k ∈ [1, l]. The
case l = 1 is clear, since y1 = x1 and α11 = λ11 = 1.

Now let l > 1, and assume (4.18) holds for j, k ∈ [1, l − 1]. If j ∈ [1, l − 1] and
s(j) > l, then both cases of Proposition 4.7 yield yjxl = α−1

lj xlyj . Hence, it just remains

to consider yl.
If p(l) = −∞, then yl = xl and δl = 0. In this case,

ylxk = σl(xk)yl = λlkxkyl = α−1
kl xkyl

for k ∈ [1, l− 1], while ylxl = xlyl = αllxlyl because αll = λll = 1. Finally, suppose that
p(l) 6= −∞, and note that αll = λllαl,p(l) = αl,p(l). Hence, it follows from Proposition

4.7(b) that ylxl = α−1
ll xlyl. Since s(p(l)) = l, our induction hypothesis implies that

yp(l)xk = α−1
k,p(l)xkyp(l) for k ∈ [1, l − 1]. Appealing again to Proposition 4.7(b), we

conclude that

ylxk = (ϕyp(l)σl(xk))yl = α−1
k,p(l)λlkxkyl = α−1

kl xkyl

for k ∈ [1, l − 1].
This completes the induction. �

4.3. Proof of Theorem 4.2. Given a positive integer L, we denote by Theorem 4.2(a)
(L) the validity of the statement of Theorem 4.2 for all CGL extensions R of length
N ≤ L. Similarly, we define the statements Theorem 4.2(b) (L), Theorem 4.3 (L), and
Theorem 4.6 (L). The discussion above shows that

(4.19) Theorem 4.2(a) (N) =⇒ Theorems 4.3 (N) and 4.6 (N).

The proof of Theorem 4.2 will be completed once the following implications are estab-
lished:

(4.20) Theorem 4.2(b) (N − 1) =⇒ Theorem 4.2(a) (N).

(4.21) Theorem 4.2(a) (N) =⇒ Theorem 4.2(b) (N).
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Proof of the implication (4.20). We apply Theorem 3.7 to the skew polynomial algebra
R = RN−1[xN ;σN , δN ]. All we need to show is that in this setting, the situation (iii)
in Theorem 3.7 can never occur. Suppose that situation (iii) does occur. Then by
Proposition 3.8, δN (u) = 0 for all homogeneous prime elements u of RN−1 but δN 6= 0.
However, this contradicts Theorem 4.2(b) (N − 1). �

Our proof of (4.21) involves some analysis of skew derivations on the quantum torus
Tq. Given f = (m1, . . . ,mN ) ∈ ZN , define the Laurent monomial

(4.22) yf := ym1
1 · · · ymNN ∈ Tq.

The algebra Tq is ZN -graded by

deg yf := f, ∀f ∈ ZN .

We will say that a K-linear map η : Tq → Tq is ZN -homogeneous of degree g ∈ ZN if

η(yf ) ∈ Kyf+g for all f ∈ ZN . (The term homogeneous is already used in the context
of the X(H)-grading of R; we use the term ZN -homogeneous to distinguish the two
gradings.) Given a general K-linear map η : Tq → Tq, for g ∈ ZN there are uniquely
defined ZN -homogeneous K-linear maps ηg of degree g such that

η =
∑
g∈ZN

ηg.

If σ is an automorphism of Tq which preserves the ZN -grading and δ is a σ-derivation,
then the component δg is a σ-derivation for each g ∈ ZN . Since Tq is finitely generated,
δg 6= 0 for at most finitely many g ∈ ZN .

Let ≺ be the reverse lexicographic order on ZN (defined as it was above on ZN≥0).
Any nonzero element u ∈ Tq can be uniquely written in the form

(4.23) u = ζ1y
f1 + · · ·+ ζry

fr where f1 ≺ · · · ≺ fr in ZN and ζ1, . . . , ζr ∈ K∗.

We will say that ζry
fr is the leading term of u and denote it ltq(u), to distinguish it

from our previous usage of leading terms. For future reference, observe that

(4.24) ltq(ayk + b) = ltq(a)yk ∀k ∈ [2, N ], a, b ∈ K〈y±1
1 , . . . , y±1

k−1〉, a 6= 0.

If σ and δ are as above, with δ 6= 0, we have

(4.25) δ = δg1 + · · ·+ δgt with g1 ≺ · · · ≺ gt in ZN , all δgi 6= 0.

Moreover, if σδ = qδσ for some q ∈ K∗, then σδgi = qδgiσ, for all i ∈ [1, t]. For m > 0
and u as in (4.23), the component of δm(u) in degree fr +mgt is ζr(δ

gt)m(yfr). Hence,

(4.26) δm(u) = 0 =⇒ (δgt)m(ltq(u)) = 0

for all m > 0 and nonzero u ∈ Tq.

Lemma 4.9. Let T be a K-algebra domain, σ an automorphism of T , and δ a σ-
derivation on T such that σδ = qδσ for some q ∈ K∗ which is not a root of unity.
Suppose y ∈ T is a unit such that δm(y) = δm(y−1) = 0 for some m > 0. Then
δ(y) = δ(y−1) = 0.
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Proof. We apply the idea of [20, Lemme 7.2.3.2]. Let r, s ≥ 0 be maximal such that
δr(y) 6= 0 and δs(y−1) 6= 0. Then, by the q-Leibniz rule for δ (e.g., [5, Lemme 2.2]),

δr+s(yy−1) =

r+s∑
l=0

ql(l−r−s)
(
r+s
l

)
q
σr+s−lδl(y)δr+s−l(y−1)

= q−rs
(
r+s
r

)
q
σsδr(y)δs(y−1) 6= 0.

Since this is not possible when r + s > 0, we must have r = s = 0, and therefore
δ(y) = δ(y−1) = 0. �

Proof of the implication (4.21). Let R be a CGL extension of length N as in Definition
4.1. By (4.19), the statements of Theorems 4.3 and 4.6 hold for R. Let h ∈ H and σ =
(h·) ∈ Aut(R). Let δ be a locally nilpotent σ-derivation of R satisfying the conditions
in Theorem 4.2(b), and suppose that δ 6= 0. The assumption (4.2) implies

(4.27) δ(yk) = 0, ∀k ∈ [1, N ] such that s(k) = +∞.
The automorphism σ = (h·) of R and the σ-derivation δ extend to an automorphism

and σ-derivation of Fract(R) satisfying σδ = qδσ. Obviously σ(Tq) = Tq, and since
δ(yk) ∈ R ⊆ Tq for all k ∈ [1, N ], we see that δ(Tq) ⊆ Tq. Now view σ and δ as
an automorphism and a σ-derivation of Tq, note that σ preserves the ZN -grading, and
decompose δ as in (4.25). Due to the assumption that δ 6= 0, we must have δ(yj) 6= 0
for some j ∈ [1, N ]. Moreover, s(j) 6= +∞ and δgt(yj) 6= 0. We will prove the following
fact:

(*) If δgt(yk) = 0 for some k ∈ [1, N ] with p(k) 6= −∞, then δgt(yp(k)) = 0.

By (4.27), δgt(yk) = 0, for all k ∈ [1, N ] such that s(k) = +∞. A downward recursive
application of (*) leads to δgt(yk) = 0, for all k ∈ [1, N ], contradicting what we found
above. This contradiction proves implication (4.21).

We are left with showing (*). Assume that δgt(yk) = 0 for some k ∈ [1, N ] with
p(k) 6= −∞. There exists m > 0 such that

0 = δm(xk) = δm(y−1
p(k)yk + y−1

p(k)ck).

Since ck ∈ Rk−1, the elements ck and y−1
p(k)ck belong to the subalgebra of Tq generated

by y±1
1 , . . . , y±1

k−1. Observations (4.24) and (4.26) then imply (δgt)m(y−1
p(k)yk) = 0. But

δgt(yk) = 0, so

(4.28) 0 = (δgt)m(y−1
p(k)yk) =

(
(δgt)m(y−1

p(k))
)
yk, i.e., (δgt)m(y−1

p(k)) = 0.

On the other hand, the restriction of δ to R is locally nilpotent. Hence, δm
′
(yp(k)) = 0

for some m′ > 0. It follows from (4.26) that (δgt)m
′
(yp(k)) = 0. We combine this and

the second equality in (4.28), and apply Lemma 4.9 to obtain δgt(yp(k)) = 0. �

4.4. Freeness of R over N (R) for all CGL extensions R. Next we combine Theo-
rem 4.6 with the method of the proof of [22, Theorems 5.1 and 5.4] to obtain that every
CGL extension R is a free left and right module over its normal subalgebra N (R), with
N (R) as a direct summand.

Fix a CGL extension R of length N and rank n, and recall the definition of the
surjective function µ : [1, N ]→ [1, n] from Theorem 4.3. By Theorem 4.6, N (R) equals
the quantum affine space algebra Nq which is the subalgebra of Aq generated by

{yj | j ∈ [1, N ], s(j) = +∞} = {ymax µ−1(i) | i ∈ [1, n]}.
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The Gelfand–Kirillov dimension of Nq equals n. Define the subset

(4.29) ∆(R) := {(m1, . . . ,mN ) ∈ ZN≥0 | ∀i ∈ [1, n] ∃k ∈ µ−1(i) such that mk = 0},

cf. [22, Eq. (5.10)]. Recall the definition of the vector k ∈ ZN≥0 for k ∈ [1, N ] from

Subsection 4.2. The following lemma is analogous to [22, Lemma 5.3]. Its proof is left
to the reader.

Lemma 4.10. Let R be a CGL extension of length N and rank n, and µ : [1, N ]→ [1, n]
be the corresponding surjective function from Theorem 4.3. For every f ∈ ZN≥0, there

exist unique g ∈ ∆(R) and c1, . . . , cn ∈ Z≥0 such that

(4.30) f = g + c1 max µ−1(1) + · · ·+ cn max µ−1(n).

Theorem 4.11. For all CGL extensions R, we have

R =
⊕

g∈∆(R)

N (R)xg =
⊕

g∈∆(R)

xgN (R),

cf. (4.11) and (4.29).

Since 0 ∈ ∆(R), Theorem 4.11 has the following direct corollary. The second state-
ment follows from Corollary 4.8, which implies that N (R)xg = xgN (R) for all g ∈ ZN≥0.

Corollary 4.12. Every CGL extension R is a free left and right module over its normal
subalgebra N (R), and N (R) is an (N (R),N (R))-bimodule direct summand of R.

Proof of Theorem 4.11. Recall the definition of the leading term of an element of R from
Subsection 4.2. The set

{xf | f ∈ ZN≥0}
is a K-basis of R. By Lemma 4.10, for every f ∈ ZN≥0 there exist unique g ∈ ∆(R) and

c1, . . . , cn ∈ Z≥0 such that (4.30) is satisfied. It follows from equations (4.12) and (4.13)
that

lt
(
yc1

max µ−1(1)
· · · ycn

max µ−1(n)
xg
)

= ξxf and

lt
(
xgyc1

max µ−1(1)
· · · ycn

max µ−1(n)

)
= ξ′xf

for some ξ, ξ′ ∈ K∗. This implies the statement of the theorem for filtration reasons
analogously to the proof of [22, Theorem 5.4]. �

5. The strong H-UFD property

We prove in this section that for any CGL extension R, the torus H can be chosen
so that R is a strong H-UFD. That this does not hold for arbitrary choices of H can be
seen in the standard generic quantized coordinate ring of KN , that is, the K-algebra R
with generators x1, . . . , xN and relations xjxk = qxkxj for 1 ≤ j < k ≤ N , where q ∈ K∗
is a non-root of unity. The rank 1 torus H = K∗ acts rationally on R with α · xj = αxj
for all α ∈ H and j ∈ [1, N ]. With this action, and with the iterated skew polynomial
presentation

R = K[x1][x2;σ2] · · · [xN ;σN ],

R is a torsionfree CGL extension. Thus, R is an H-UFD and a UFD. However, it is not
a strong H-UFD (assuming N ≥ 2), because the homogeneous prime elements xj are
not H-normal. This failure is easily repaired, however – if H is replaced by (K∗)N with
its usual action, then R becomes a strong H-UFD.
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5.1. Iteration of Theorem 3.11. The key to establishing the strong H-UFD property
in a CGL extension is to have the hypothesis of Theorem 3.11 available at each step of
the iteration.

Theorem 5.1. Let R be a CGL extension of length N and rank n as in Definition 4.1.
Assume that for each j ∈ [1, N ] with δj = 0 and each ξ ∈ K∗, there exists t ∈ H such
that t · xj = ξxj and t · xk = xk for all k ∈ [1, j − 1]. Then R is a strong H-UFD.

The image of H in Aut(R) is a K-torus of rank exactly n.

Proof. It is an immediate corollary of Theorem 3.11 that R is a strong H-UFD.
The kernel of the action map θ : H → Aut(R) is just the intersection of the kernels

of the characters ρj for j ∈ [1, N ], where ρj ∈ X(H) is the X(H)-degree of xj . Hence,
ker θ is a closed subgroup of H, and so θ(H) is a K-torus. This torus acts rationally on
R, and R is a CGL extension with respect to the θ(H)-action. Moreover, θ(H) satisfies
the hypotheses of the theorem. Thus, we may replace H by θ(H), i.e., we may assume
that the action of H on R is faithful.

Let

π : H −→
∏
j∈D

K∗, π(h) =
(
ρj(h)

)
j∈D

be the natural projection, where D := {j ∈ [1, N ] | δj = 0}. It is clear from the
hypothesis of the theorem that π is surjective. Since n = |D| by (4.3), we thus have
rank(H) ≥ n, and we will have equality once we establish that π is injective.

From (3.2), we have (h·)|Rj−1 ◦ δj = ρj(h)δj ◦ (h·)|Rj−1 for h ∈ H and j ∈ [2, N ].
It follows that for 1 ≤ k < j ≤ N , either δj(xk) = 0 or δj(xk) is homogeneous with
X(H)-degree ρj + ρk. If π is not injective, there is a non-identity element h ∈ kerπ.
Since H acts faithfully on R, there must be some j ∈ [1, N ] such that ρj(h) 6= 1, and we
may assume that j is minimal for this property. Moreover, j /∈ D because h ∈ kerπ, so
j > 1 and there is some k ∈ [1, j − 1] such that δj(xk) 6= 0. Since δj(xk) is in Rj−1, its

X(H)-degree must be of the form
∑j−1

i=1 miρi for some mi ∈ Z≥0. On the other hand,

this degree is ρj + ρk as noted above, so ρj = −ρk +
∑j−1

i=1 miρi. But the minimality of
j implies that ρi(h) = 1 for all i < j, and hence we obtain ρj(h) = 1, contradicting our
assumption. Therefore π is indeed injective. �

5.2. Maximal tori and the strong H-UFD property. We now describe the appro-
priate maximal torus for the strong H-UFD result. Let R be a CGL extension of length
N as in Definition 4.1. Equip R with the rational action of the torus (K∗)N by invertible
linear transformations given by the rule

(5.1) (α1, . . . , αN ) · (xm1
1 · · ·x

mN
N ) = αm1

1 · · ·α
mN
N xm1

1 · · ·x
mN
N .

The given action of H on R factors through the above (K∗)N -action via a morphism (of
algebraic groups) H → (K∗)N . Since nothing is lost by reducing H modulo the kernel
of its action, we may assume the action of H on R is faithful and then identify H with
its image in (K∗)N . Thus, there is no loss of generality in assuming that H is a closed
subgroup of (K∗)N . (For closedness, see, e.g., [3, Corollary 1.4].)

Next, set

G := {ψ ∈ (K∗)N | (ψ·), acting as in (5.1), is an automorphism of R}(5.2)

∼= {ζ ∈ Aut(R) | x1, . . . , xN are ζ-eigenvectors},
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and observe that G is a closed subgroup of (K∗)N . Since G is diagonalizable, its con-
nected component of the identity, G◦, is a torus (e.g., [3, Corollary 8.5]). This subgroup
is the unique maximal torus of G, and so it contains H. Let us set

(5.3) Hmax(R) := G◦.

(The definition of this group, and its position within (K∗)N , depend on the given CGL
extension presentation of R. However, we do not indicate this dependence in the nota-
tion.) Since Hmax(R) contains H, the algebra R is also a CGL extension with respect
to Hmax(R). We shall see later that, in fact, Hmax(R) = G (i.e., G is connected).

Remark 5.2. The group Hmax(R) associated with a CGL extension R has the following
universal property, assuming that we fix the CGL extension presentation (4.1) for R. If
H1 is any K-torus acting rationally on R such that (R,H1) is CGL for the presentation
(4.1), then the action of H1 on R factors uniquely through the action of Hmax(R), via
an algebraic group morphism H1 → Hmax(R). Thus, if we identify Hmax(R) with its
natural image in Aut(R), the image of the action map H1 → Aut(R) must be contained
in Hmax(R).

Theorem 5.3. Let R be a CGL extension of length N and rank n as in Definition 4.1,
and assume that H = Hmax(R). Then R is a strong H-UFD, and rankH = n.

Proof. Both conclusions will follow from Theorem 5.1 once we verify the hypothesis of
that theorem.

Let j ∈ [1, N ] such that δj = 0. By Proposition 4.7, p(j) = −∞. There is some

l ∈ [1, N ] with s(l) = +∞ and pO−(l)(l) = j. By Corollary 4.8, ϕyl(xk) = α−1
kl xk for all

k ∈ [1, N ].

Set θ := ϕ−1
yl
◦
(∏O−(l)

m=0 hpm(l)·
)

, which is an automorphism of R for which all the

xk are eigenvectors. Thus, we may identify θ with an element of the group G ⊆ (K∗)N
considered above. Since hpm(l)(xk) = λpm(l),kxk when k < pm(l), we find that θ(xk) = xk
for k < j and θ(xj) = λjxj . Hence, θ = (1, . . . , 1, λj , ∗, . . . , ∗) as an element of (K∗)N .

Let π : (K∗)N → (K∗)j be the projection onto the direct product of the first j
components of (K∗)N . Then π(H) is a closed subgroup of (K∗)j . Set

J := {a ∈ (K∗)j | ak = 1 ∀k < j},

another closed subgroup of (K∗)j . Now π(H)∩J is a closed subgroup of J . Since H has
finite index in G, there is some r > 0 such that θr ∈ H. Then π(θri) = (1, . . . , 1, λrij )

lies in π(H) ∩ J for all i ∈ Z, and consequently π(H) ∩ J is infinite, because λj is not
a root of unity. However, J is an irreducible 1-dimensional variety, so we must have
π(H) ∩ J = J .

Thus, for any ξ ∈ K∗, there is some t ∈ H with π(t) = (1, . . . , 1, ξ). Consequently,
t · xj = ξxj and t · xk = xk for all k ∈ [1, j − 1]. This verifies the hypothesis of Theorem
5.1. �

The second conclusion of Theorem 5.3 verifies a conjecture of Launois and Lenagan
[unpublished].

Corollary 5.4. Let R be a CGL extension of length N and rank n as in Definition
4.1. For any nonzero normal element u ∈ R, there exists hu ∈ Hmax(R) such that
ua = (hu · a)u for all a ∈ R.
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Proof. We may assume that H = Hmax(R). Then R is a strong H-UFD by Theorem
5.3, and the result follows from Theorem 2.6. �

Now that we have established that the maximal torus associated to a CGL extension
R has rank equal to the rank of R, we can pin down the group Hmax(R) tightly, as
follows.

Theorem 5.5. Let R be a CGL extension of length N and rank n as in Definition 4.1,
and define the group G ⊆ (K∗)N as in (5.2). Then

Hmax(R) = G.

Now set D′ := {k ∈ [2, N ] | δk 6= 0} = {k ∈ [2, N ] | p(k) 6= −∞}. For each k ∈ D′,
choose jk ∈ [1, k − 1] such that δk(xjk) 6= 0, and choose mk ∈ Zk−1

≥0 such that the

monomial xmk = xmk11 · · ·xmk,k−1

k−1 appears in δk(xjk) when δk(xjk) is expressed in the
PBW basis (4.11). Then

(5.4) Hmax(R) = {ψ = (ψ1, . . . , ψN ) ∈ (K∗)N | ψk = ψ−1
jk

k−1∏
i=1

ψmkii , ∀k ∈ D′}.

Proof. By Theorem 5.3 and equation (4.3), the rank of Hmax(R) is n = N − |D′|. Let
G2 denote the closed subgroup of (K∗)N described on the right hand side of (5.4), and
note that G2 is a K-torus of rank n. We shall prove that Hmax(R) ⊆ G ⊆ G2. Since
Hmax(R) and G2 are connected groups of the same dimension, it will then follow that
Hmax(R) = G2, proving both parts of the theorem.

By construction, Hmax(R) ⊆ G, so only the inclusion G ⊆ G2 remains. Let ψ ∈ G,
and let k ∈ D′. On applying the automorphism (ψ·) to the relation

xkxjk = λk,jkxjkxk + δk(xjk),

we see that ψ · δk(xjk) = ψkψjkδk(xjk). Consequently, all the monomials appearing in
the PBW basis expansion of δk(xjk) must have ψ-eigenvalue ψkψjk . One of these is xmk ,

whose ψ-eigenvalue also equals
∏k−1
i=1 ψ

mki
i . Hence, ψk = ψ−1

jk

∏k−1
i=1 ψ

mki
i . This proves

that G ⊆ G2, as required. �

6. Iterated sets of prime elements and the Cauchon quantum tori

6.1. Cauchon’s quantum tori. Given a CGL extension R, there are now two com-
pletely different ways to embed it into a quantum torus. The first one is obtained via
recursive applications of the Cauchon deleting derivation procedure [5]. The second is
the one from Theorem 4.6 obtained via iterated sequences of homogeneous prime ele-
ments. These quantum tori are distinct subalgebras of Fract(R). We relate them for an
important class of CGL extensions that contain all iterated skew polynomial extensions
arising from quantized universal enveloping algebras of Kac–Moody algebras. More pre-
cisely, if R is a symmetric CGL extension as defined in Definition 6.2, then one can
present R as an iterated skew polynomial extension in two different ways by adjoining
the variables in the orders xN , . . . , x1 and x1, . . . , xN . In Theorem 6.6, we prove that the
quantum tori obtained by applying the former procedure to the first iterated skew poly-
nomial extension and the latter to the second one are equal as subalgebras of Fract(R).
We furthermore derive an explicit formula expressing the iterated sets of homogeneous
prime elements in terms of the Cauchon variables.

We begin by recalling the key steps in Cauchon’s procedure of deleting derivations
[5, Section 3]. Let R be a CGL extension of length N as in Definition 4.1. By abuse
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of notation, we will denote by the same symbol the extension of each σk to the au-
tomorphism (hk·) of Fract(R), and the corresponding automorphism of any σk-stable
subalgebra of Fract(R). For l = N + 1, . . . , 2, Cauchon recursively defined N -tuples of
nonzero elements

(x
(l)
1 , . . . , x

(l)
N ) and subalgebras R(l) := K〈x(l)

1 , . . . , x
(l)
N 〉

of Fract(R). In the first step (l = N + 1), one sets

(x
(N+1)
1 , . . . , x

(N+1)
N ) := (x1, . . . , xN ) and R(N+1) = R.

For the recursive step, let l ∈ [2, N ] and assume that (x
(l+1)
1 , . . . , x

(l+1)
N ) and R(l+1)

have been defined. Cauchon proved that R(l+1) is an iterated skew polynomial ring of
the form

(6.1)
R(l+1) = K[x

(l+1)
1 ] · · · [x(l+1)

l ;σ
(l+1)
l , δ

(l+1)
l ][x

(l+1)
l+1 ; τ

(l+1)
l+1 ] · · · [x(l+1)

N ; τ
(l+1)
N ]

∼= K[x1][x2;σ2, δ2] · · · [xl;σl, δl][xl+1; τl+1] · · · [xN ; τN ],

where τ
(l+1)
k (x

(l+1)
j ) = λkjx

(l+1)
j for k > l, j and the isomorphism sends x

(l+1)
j 7→ xj for

all j ∈ [1, N ] [5, Théorème 3.2.1]. In fact, as is easily seen, each σ
(l+1)
k and each τ

(l+1)
k

is just σk acting on the appropriate subalgebra of Fract(R). To simplify the notation,

one writes σj , δj , τj for σ
(l+1)
j , δ

(l+1)
j , τ

(l+1)
j . The next N -tuples are defined by iterating

the Cauchon map (3.4) in the following way:

(6.2) x
(l)
j :=

x
(l+1)
j , if j ≥ l∑∞
m=0

(1−λl)−m
[m]λl !

[
δml σ

−m
l

(
x

(l+1)
j

) ](
x

(l+1)
l

)−m
, if j < l.

In all cases the above sums are finite due to the local nilpotence of δl and the commu-
tation relation σlδl = λlδlσl. Cauchon [ibid] proved that

Sl :=
{(

x
(l+1)
l

)m ∣∣∣ m ∈ Z≥0

}
is an Ore subset of R(l) and R(l+1) for l ∈ [2, N ] and that one has the following equality
of K-subalgebras of Fract(R):

(6.3) R(l)[S−1
l ] = R(l+1)[S−1

l ].

Denote the final N -tuple of Cauchon elements

(x1, . . . , xN ) := (x
(2)
1 , . . . , x

(2)
N ).

By (6.3), we have the inclusions

R ⊂ K〈x±1
1 , . . . , x±1

N 〉 ⊂ Fract(R).

Recall the definition (4.14) of the multiplicatively skewsymmetric matrix Λ = (λjk) ∈
MN (K∗). It follows from (6.1) that the algebra K〈x±1

1 , . . . , x±1
N 〉 is isomorphic to the

quantum torus TΛ by

(6.4) xk 7→ Yk, k ∈ [1, N ]

in terms of the notation (4.10). We note that only very rarely is the quantum affine
space algebra K〈x1, . . . , xN 〉 a subalgebra of R.

Repeated applications of the H-equivariance of the Cauchon map [16, Lemma 2.6]
give the following:

(6.5) xj is an H-eigenvector with the same H-eigenvalue as xj , ∀j ∈ [1, N ].
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(We do not call xj homogeneous here, because Fract(R) is not X(H)-graded.)
For j, k ∈ [1, N ], let R[j,k] be the unital subalgebra of R generated by those xi for

which j ≤ i ≤ k. In other words

R[j,k] := K〈xj , . . . , xk〉 if j ≤ k and R[j,k] := K otherwise.

Lemma 6.1. Suppose that δk(xj) ∈ R[j+1,k−1] for 1 ≤ j < k ≤ N . Then xj − xj ∈
FractR[j+1,N ] for all j ∈ [1, N ].

Proof. For 1 ≤ j < l ≤ N , it follows from (6.2) and our hypothesis that

x
(l)
j − x

(l+1)
j ∈ FractK〈x(l+1)

j+1 , . . . , x
(l+1)
l 〉.

A downward induction on m then yields

FractK〈x(m)
k , . . . , x

(m)
N 〉 ⊆ FractR[k,N ]

for k,m ∈ [1, N ], whence x
(l)
j − x

(l+1)
j ∈ FractR[j+1,N ] for 1 ≤ j < l ≤ N . Since

x
(N+1)
j = xj and x

(j+1)
j = xj , the lemma follows. �

6.2. Symmetric CGL extensions. For an iterated skew polynomial extension R as
in (4.1), the notation above connects with the notation from Subsection 4.1 as follows:
Rk = R[1,k] for k ∈ [1, N ]. Set

R′k := R[k,N ].

Definition 6.2. We call a CGL extension R of length N as in Definition 4.1 symmetric
if the following two conditions hold:

(i) For all 1 ≤ j < k ≤ N ,

δk(xj) ∈ R[j+1,k−1].

(ii) For all j ∈ [1, N ], there exists h′j ∈ H such that

h′j · xk = λ−1
kj xk = λjkxk, ∀k ∈ [j + 1, N ]

and h′j · xj = λ′jxj for some λ′j ∈ K∗ which is not a root of unity.

Given a symmetric CGL extension R as in Definition 6.2, both σk and δk preserve
R[j,k−1] for j ∈ [1, k−1]. Now let j ∈ [1, N−1], fix a choice of h′j ∈ H as in the definition,
and denote

σ′j := (h′j ·)|R′j+1
.

This is an automorphism of R′j+1, uniquely determined by the conditions

σ′j(xk) = λjkxk, ∀k ∈ [j + 1, N ],

even though h′j may not be unique. The conditions (i) and (ii) imply that the inner

(h′j ·)-derivation on R given by a 7→ xja− (h′j ·a)xj restricts to a σ′j-derivation δ′j of R′j+1

such that

δ′j(xk) := xjxk − λjkxkxj = −λjkδk(xj), ∀k ∈ [j + 1, N ].

The maps σ′j and δ′j preserve R[j+1,k] for k ∈ [j + 1, N ].
The following lemma and corollary are straightforward.
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Lemma 6.3. For all symmetric CGL extensions R of length N as in Definition 6.2, we
have the skew polynomial extensions

R[j,k] = R[j,k−1][xk;σk, δk] and R[j,k] = R[j+1,k][xj ;σ
′
j , δ
′
j ]

for all 1 ≤ j < k ≤ N . Both derivations δk and δ′j are locally nilpotent.

Corollary 6.4. Every symmetric CGL extension R as above has the second CGL ex-
tension presentation

(6.6) R = K[xN ][xN−1;σ′N−1, δ
′
N−1] · · · [x1;σ′1, δ

′
1]

by keeping the same K-torus H as in the original presentation and using the elements
h′N , . . . , h

′
1 ∈ H.

Remark 6.5. More generally, a symmetric CGL extension R as above has a CGL
extension presentation associated to every permutation τ of {1, . . . , N} such that

τ(k) = max τ([1, k − 1]) + 1 or τ(k) = min τ([1, k − 1])− 1, ∀k ∈ [2, N ].

This presentation is given by

R = K[xτ(1)][xτ(2);σ
′′
τ(2), δ

′′
τ(2)] · · · [xτ(N);σ

′′
τ(N), δ

′′
τ(N)],

where σ′′τ(k) := στ(k) and δ′′τ(k) := δτ(k) if τ(k) = max τ([1, k−1])+1, while σ′′τ(k) := σ′τ(k)

and δ′′τ(k) := δ′τ(k) if τ(k) = min τ([1, k − 1]) − 1. For this presentation, one keeps the

original K-torus H and uses the elements h′′τ(1), . . . , h
′′
τ(N) ∈ H given by h′′τ(k) = hτ(k) if

τ(k) = max τ([1, k−1])+1 and h′′τ(k) = h′τ(k) if τ(k) = min τ([1, k−1])−1. The original

CGL extension presentation of R corresponds to τ = id, and the one in Corollary 6.4 to
the permutation given by τ(k) = N + 1− k, for all k ∈ [1, N ].

6.3. The relationship theorem. Let R be a CGL extension of length N as in Defini-
tion 4.1. Equation (4.6) defines the iterated set of elements y1, . . . , yN of R, which incor-
porate the homogeneous prime elements of the intermediate algebras Rk by (4.7). Recall
from Subsection 4.2 that the subalgebra K〈y±1

1 , . . . , y±1
N 〉 of Fract(R) is a quantum torus

denoted by Tq where the multiplicatively skewsymmetric matrix q = (qjk) ∈ MN (K∗)
is given by (4.16).

The Cauchon procedure applied to the CGL extension presentation (4.1) of R pro-
duces the elements x1, . . . , xN ∈ Fract(R). The subalgebra K〈x±1

1 , . . . , x±1
N 〉 of Fract(R)

is isomorphic to the quantum torus TΛ associated to the multiplicatively skewsymmetric
matrix Λ = (λjk) ∈ MN (K∗), see (4.14). The quantum tori Tq = K〈y±1

1 , . . . , y±1
N 〉 and

TΛ = K〈x±1
1 , . . . , x±1

N 〉 are completely different subalgebras of Fract(R) except in some
very special cases. For instance, in Example 4.4 one calculates that

x1 = x1 + q(1− qr+1)−1xr2x
−1
3 + (q − 1)−1, x2 = x2, x3 = x3.

Moreover, y3 = x1x2x3 but y2 = x1x2− (1− qr+1)−1xr+1
2 x−1

3 , which is a non-unit in TΛ.
Thus, in this example we have Aq ⊆ TΛ but Tq * TΛ.

In order to relate the two embeddings of a CGL extension in quantum tori, we need
to use a reverse CGL extension presentation in one of the two cases. For this reason,
from now on we assume that R is a symmetric CGL extension. Then we have the second
CGL extension presentation of R from (6.6). We apply the Cauchon procedure to this
CGL extension presentation, keeping the indices in descending order: N,N − 1, . . . , 1.
The analogs of the elements x1, . . . , xN for this case will be denoted by

x′N , . . . , x
′
1 ∈ Fract(R).
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The discussion in Subsection 6.1 shows that

T ′Λ := K〈(x′N )±1, . . . , (x′1)±1〉 ⊂ Fract(R)

is a quantum torus which is isomorphic to TΛ. In particular,

x′jx
′
k = λjkx

′
kx
′
j , ∀j, k ∈ [1, N ].

Since the presentation (6.6) satisfies δ′j(xk) ∈ R[j+1,k−1] for 1 ≤ j < k ≤ N , observa-

tion (6.5) and Lemma 6.1 yield the following for all k ∈ [1, N ]:

(6.7)
x′k is an H-eigenvector with the same H-eigenvalue as xk.

x′k − xk ∈ FractR[1,k−1].

The main result of this section relates the embeddings R ⊂ Tq and R ⊂ T ′Λ, and
the generators y1, . . . , yN of Tq and x′1, . . . , x

′
N of T ′Λ. From another perspective it

gives explicit simple formulas for the homogeneous prime elements of the intermediate
algebras Rk in terms of the Cauchon elements for R. The proof of the theorem relies on
an extension of the argument of the proof of [9, Theorem 3.1] of Geiger and Yakimov.

Theorem 6.6. Let R be a symmetric CGL extension of length N as in Definition 6.2.
Then

(6.8) T ′Λ = Tq
and for all k ∈ [1, N ],

(6.9) yk = x′
pO−(k)(k)

· · ·x′k.

Proof. Obviously (6.8) follows from (6.9). We prove (6.9) by induction on k. For k = 1,
we have x′1 = x1 by the current Cauchon procedure, and y1 = x1 by (4.6).

Assume (6.9) holds for all k = 1, . . . , l − 1 for some l ∈ [2, N ]. Therefore

x′k =

{
y−1
p(k)yk, if p(k) 6= −∞
yk, if p(k) = −∞

for all k ∈ [1, l − 1]. Since ylyk = qlkykyl, it follows from (4.16) that

ylx
′
k = α−1

kl x
′
kyl, ∀k ∈ [1, l − 1],

in terms of the scalars αkl defined in (4.15). At the same time, working in the quantum
torus T ′Λ we obtain (

x′
pO−(l)(l)

· · ·x′l
)
x′k = α−1

kl x
′
k

(
x′
pO−(l)(l)

· · ·x′l
)

for the same values of k. Set

zl :=
(
x′
pO−(l)(l)

· · ·x′l
)−1

yl = (x′l)
−1y−1

p(l)yl ∈ Fract(R),

taking account of (6.9) for k = p(l) and (6.7). We have

(6.10) zlx
′
k = x′kzl, ∀k ∈ [1, l − 1].

Applying again (6.7) and (6.9) gives

(6.11) Fract(Rl−1) = Fract(K〈y1, . . . , yl−1〉) = Fract(K〈x′1, . . . , x′l−1〉).

Consequently, (6.10) implies

(6.12) zlb = bzl, ∀b ∈ Fract(Rl−1).
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By (4.6) and (6.7),

(6.13) zl ∈ Fract(Rl).

Equation (4.6) together with (6.7) implies

zl = 1 + (x′l)
−1bl

for some bl ∈ Fract(Rl−1). Now it follows from (6.12) and the fact that zl commutes
with itself that zlx

′
l = x′lzl, and hence

zlxl = xlzl,

due to (6.7). Applying again (6.12) and (6.13) gives zl ∈ Z(Fract(Rl)). The homogeneity
of the right hand side of (4.6) and the fact that x′k has the same H-eigenvalue as xk, for
all k ∈ [1, N ], imply zl is fixed under the action of H, that is,

zl ∈ Z(Fract(Rl))
H.

But Rl is a CGL extension and so the strong H-rationality result [4, Theorem II.6.4]
implies that Z(Fract(Rl))

H = K. This forces zl = 1, which establishes the validity of
(6.9) for k = l. �
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[10] C. Geiß, B. Leclerc, and J. Schröer, Cluster structures on quantum coordinate rings, Selecta Math.

19 (2013), 337–397.
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